
l!UNITED
TECHNOLOGIES
MOSTEK

Advances in semiconductor technology have provided the
capability to place on a single silicon chip a microprocessor
at least an order of magnitude higher in performance and
circuit complexity than has been previously available. The
MK68000 is the first of a family of such VLSI micro
processors from Mostek. It combines state-of-the-art
technology and advanced circuit design techniques with
computer sciences to achieve an architecturally advanced
16-bit microprocessor.

The resources available to the MK68000 user consist of the
following:

• 17 32-Bit Data and Address Registers
• 16 Megabyte Direct Addressing Range
• 56 Powerful Instruction Types
• Operations on Five Main Data Types
• Memory Mapped liD
• 14 Addressing Modes

PROGRAMMING MODEL
31 1615 87 o

~ I I -
l- I I -
~ I I -
~ I I -
f- I I -
l- I I -
~ I I -

I I

31 1615 0

- I -
r- I -

,r- I -
f- I -
f- I -

- I -
I

15 87 0

ISYSTEM BYTE! USER BYTE I

DO

01

02

03

04

05

06

07

AO

A1

A2

A3

A4

A5

A6

EIGHT
DATA
REGISTERS

SEVEN
ADDRESS
REGISTERS

TWO STACK
POINTERS

PROGRAM
COUNTER

STATUS
REGISTER

VI-1

MICROCOMPUTER
COMPONENTS

16-BIT MICROPROCESSOR
MK68000

PIN ASSIGNMENT

04 05

03 06

02 07

01 08

DO 09

AS 010

UOS 011

lOS 012

R/iN 013

OTACK 014

iiG 015

BGACK GNO

BR A23

Vee A22

ClK A21

GNO Vee

HALT A20

RESET A19

VMA A1B

A17

VPA A16

BERR A15

IPl2 A14

iffi A13

IPlO A12

FC2 A11

FC1 A10

FCO A9

A1 A8

A2 A7

A3 A6

A4 A5

II

As shown in the programming model, the MK68000 offers
seventeen 32-bit registers in addition to the 32-bit program
counter and a 16-bit status register. The first eight registers
(00-07) are used as data registers for byte (8-bit), word
(16-bit), and long word (32-bit) data operations. The second
set of seven registers (AO-A6) and the system stack pointer
may be used as software stack pointers and base address
registers. In addition, these registers may be used for word
and long word address operations. All 17 registers may be
used as index registers.

A 23-bit address bus provides a memory addressing range
of greater than 16 megabytes. This large range of
addressing capability, coupled with a memory management
unit, allows large, modular programs to be developed and
operated without resorting to cumbersome and time
consuming software bookkeeping and paging techniques.

The status register contains the interrupt mask (eight levels
available) as well as the condition codes; extend (X),
negative (N), zero (Z), overflow (V), and carry (C). Additional
status bits indicate that the processor is in a trace (T) mode
and/or in a supervisor (S) state.

Five basic data types are supported. These data types are:

• Bits
• BCD Digits (4-bits)
• Bytes (8-bits)
• Word (16-bits)
• Long Words (32-bits)

In addition, operations on other data types such as memory
addresses, status word data, etc., are provided for in the
instruction set.

The 14 addressing modes, shown in Table 1, include six
basic types:

• Register Direct
• Register Indirect
• Absolute
• Immediate
• Program Counter Relative
• Implied

STATUS REGIST!;:R

SYSTEM BYTE USER BYTE

Included in the register indirect addressing modes is the
capability to do postincrementing, predecrementing, off
setting and indexing. Program counter relative mode can
also be modified via indexing and offsetting.

The MK68000 instruction set is shown in Table 2. Some
additional instructions are variations, or subsets, of these
and they appear in Table 3. Special emphasis has been
given to the instruction set's support of structured high
level languages to facilitate ease of programming. Each
instruction, with few exceptions, operates on bytes, words,
and long words and most instructions can use any of the 14
addressing modes. Combining instruction types, data types,
and addressing modes, over 1000 useful instructions are
provided. These instructions include signed and unsigned
multiply and divide, "quick" arithmetic operations, BCD
arithmetic and expanded operations (through traps).

DATA ADDRESSING MODES
Table 1

Mode

Register Direct Addressing
Data Register Direct
Address Register Direct

Absolute Data Addressing
Absolute Short
Absolute Long

Program Counter Relative
Addressing

Relative with Offset
Relative with Index and Offset

Register Indirect Addressing
Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Offset
Indexed Register Indirect with
Offset

Immediate Data Addressing
Immediate
Quick Immediate

Implied Addressing
Implied Register

Generation

EA= Dn
EA=An

EA = (Next Word)
EA = (Next Two Words)

EA = (PC) + d16
EA = (PC) + (Xn) + da

EA = (An)
EA = (An), An -An + N
An - An - N, EA = (An)
EA = (An) + d16

EA = (An) + (Xn) + da

DATA = Next Word(s)
Inherent Data

EA = SR, USP, SP, PC

NOTES: d'6 =Sixteen-bit Offset
(displ acement)

SUPERVISOR
STATE

ali

NEGATIVE

ZERO

OVERFLOW

CARRY

VI-2

EA = Effective Address
An = Address Register
Dn = Data Register
Xn = Address or Data Register

used as Index Register
SR = Status Register
PC = Program Counter
() = Contents of
da = Eight-bit Offset

(displacement)

N = 1 for Byte, 2 for
Word, and 4 for Long
Word. If An is the
Stack Pointer and
the operand size is
byte, N = 2 to keep
the Stack Pointer
on a word boundary.
Replaces

INSTRUCTION SET
Table 2

Mnemonic Description Mnemonic

ABCD Add Decimal with Extend EOR
ADD Add EXG
AND Logical And EXT
ASL Arithmetic Shift Left JMP
ASR Arithmetic Shift Right JSR

Bee Branch Conditionally LEA
BCHG Bit Test and Change LINK
BCLR Bit Test and Clear LSL
BRA Branch Always LSR
BSET Bit Test and Set MOVE
BSR Branch to Subroutine MOVEM
BTST Bit Test MOVEP
CHK Check Register Against MULS

Bounds MULU
CLR Clear Operand NBCD
CMP Compare

NEG

DBee Test Condition, Decrement NOP
and Branch NOT

DIVS Signed Divide OR
DIVU Unsigned Divide

VARIATIONS OF INSTRUCTION TYPES
Table 3

Instruction
Type Variation Description

ADD ADD Add
ADDA Add Address
ADDQ Add Quick
ADDI Add Immediate
ADDX Add with Extend

AND AND Logical And
ANDI And Immediate
ANDI to CCR AND Immediate to

Condition Codes
ANDI to SR AND Immediate to

Status Register

CMP CMP Compare
CMPA Compare Address
CMPM Compare Memory
CMPI Compare Immediate

EOR EOR Exclusive Or
EORI Exclusive Or Immediate
EORI to CCR Exclusive OR Immediate

to Condition Codes
EORI to SR Exclusive OR Immediate

to Status Register

Description Mnemonic Description

Exclusive Or PEA Push Effective Address
Exchange Registers RESET Reset External Devices
Sign Extend ROL Rotate Left without Extend
Jump ROR Rotate Right without Extend
Jump to Subroutine ROXL Rotate Left with Extend
Load Effective Address ROXR Rotate Right with Extend
Link Stack RTE Return from Exception
Logical Shift Left RTR Return and Restore
Logical Shift Right RTS Return from Subroutine
Move SBCD Subtract Decimal with Extend
Move Multiple Registers See Set Conditional
Move Peripheral Data STOP Stop
Signed Multiply SUB Subtract
Unsigned Multiply SWAP Swap Data Register Halves
Negate Decimal with TAS Test and Set Operand

Extend
Negate TRAP Trap
No Operation TRAPV Trap on Overflow
One's Complement TST Test • Logical Or UNLK Unlink

Instruction
Type Variation Description

MOVE MOVE MOVE
MOVEA Move Address
MOVEQ Move Quick
MOVE from SR Move from Status Register
MOVE to SR Move to Status Register
MOVE to CCR Move to Condition Codes
MOVE USP Move User Stack Pointer

NEG NEG Negate
NEGX NeQate with Extend

OR OR Logical Or
ORI Or Immediate
ORI to CCR Or Immediate to

Condition Codes
ORI to SR OR Immediate to Status

Register

SUB SUB Subtract
SUBA Subtract Address
SUBI Subtract Immediate
SUBQ Subtract Quick
SUBX Subtract with Extend

VI·3

DATA ORGANIZATION AND ADDRESSING
CAflABILITIES

The following paragraphs describe the data organization
and addressing capabilities of the MK68000.

OPERAND SIZE

Operand sizes are defined as follows: a byte equals 8 bits, a
word equals 16 bits, and a long word equals 32 bits. The
opera nd size for each instruction is either expl icitly encoded
in the instruction or implicitly defined by the instruction
operation. All explicit instructions ~upport byte, word or long
word operands. Implicit instructions support some subset of
all three sizes.

DATA ORGANIZATION IN REGISTERS

The eight data registers support data operands of 1 , 8, 16, or
32 bits. The seven address registers together with the active
stack pointer support address operands of 32 bits.

DATA REGISTERS. Each data register is 32 bits wide.
Byte operands occupy the low order 8 bits, word operands
the low order 16 bits, and long word operands the entire 32
bits. The least significant bit is addressed as bit zero; the
most significant bit is addressed as bit 31.

When a data register is used as either a source or
destination operand, only the appropriate low-order portion
is changed; the remaining high-order portion is neither
used nor changed.

ADDRESS REGISTERS. Each address register and the
stack pointer is 32 bits wide and holds a full 32 bit address.
Address registers do not support byte sized operands.
Therefore, when an address register is used as a source
operand, either the low order word or the entire long word
operand is used depending upon the operation size. When
an address register is used as the destination operand, the
entire register is affected regardless of the operation size. If
the operation size is word, any other operands are sign
extended to 32 bits before the operation is performed.

DATA ORGANIZATION IN MEMORY

Bytes are individually addressable with the high order byte

WORD ORGANIZATION IN MEMORY
Figure 1

15 14 13 12 11 10 9 8

having an even address the same as the word, as shown in
Figur~ 1 . The low order byte has an odd address that is one
count higher than the word address. Instructions and
multibyte data are accessed only on word (even byte)
boundaries. If a long word datum is located at address n (n
even), then the second word of that datum is located at
address n + 2.

The data types supported by the MK68000 are: bit data,
integer data of 8, 16, or 32 bits, 32-bit addresses and binary
coded decimal data. Each of these data types is put in
memory, as shown in Figure 2.

ADDRESSING

Instructions for the MK68000 contain two kinds of
information: the type of function to be performed, and the
location of the operand(s) on which to perform that function.
The methods used to locate (address) the operand(s) are
explained in the following paragraphs.

Instructions specify an operand location in one of three
ways:

Register Specification - the number of the register is given
in the register field of the instruction.
Effective Address - use of the different effective address
modes.
Implicit Reference - the definition of certain instructions
implies the use of specific registers.

INSTRUCTION FORMAT

Instructions are from one to five words in length, as shown
in Figure 3. The length of the instruction and the operation
to be performed is specified by the first word of the
instruction which is called the operation word. The
remaining words further specify the operands. These words
are either immediate operands or extensions to the effective
address mode specified in the operation word.

PROGRAM/DATA REFERENCES

The MK68000 separates memory references into two
classes: program references, and data references. Program
references, as the name implies, are references to that
section of memory that contains the program being

7 6 5 4 3 2 o

BYTE 000000
WORD 100000

BYTE 000001

BYTE 000002
WORD 100002

BYTE 000003

·
~ · ~ ·

BYTE FFFFFE
WORDtFFFFE

BYTE FFFFFF

VI-4

DATA ORGANIZATION IN MEMORY
Figure 2

7

15 14 13 12 11

IMSB
BYTE 0

BYTE 2

15 14 13 12 11

IMSB

15 14 13 12 11

MSB

6

10

10

10

- -LONGWORDO - - --

BIT DATA
1 BYTE = 8 BITS

5 4 3 2 o

INTEGER DATA
1 BYTE = 8 BITS

9 8 7 6 5 4 3 2 0

~BI BYTE 1

BYTE 3

1 WORD = 16 BITS

9 8 7 6 5 4 3 2 0

WORDO ~BI WORD 1

WORD2

1 LONG WORD = 32 BITS

9 8 7 6 5 4 3 2 0

HIGH ORDER

- - -- ---------
LOWORDER LSB

- -LONG WORD 1 -

- -LONG WORD 2 -

ADDRESSES
1 ADDRESS = 32 BITS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
MSB

HIGH ORDER
- -ADDRESS 0 - - -

LOWORDER
LSB

- -ADDRESS 1 -

- -ADDRESS2- -

MSB = Most Significant Bit
LSB = Least Significant Bit DECIMAL DATA

2 BINARY CODED DECIMAL DIGITS = 1 BYTE

15 14 13 12 11 10 9 8 7 6 5 4

MSD
BCDO

BCD4

.. ..
MSD = Most Slgnrflcant Digit
LSD = Least Significant Digit

BCD1
LSD

BCD2

BCD5 BCD6

VI-5

3 2 o

BCD3

BCD7·

II

executed. Data references refer to that section of memory
that contains data. Generally, operand reads are from the
data space. All operand writes are to the data space.

REGISTER SPECIFICATION

The register field within an instruction specifies the register
to be used. Other fields within the instruction specify
whether the register selected is an address or data register
and how the register is to be used.

EFFECTIVE ADDRESS

Most instructions specify the location of an operand by
using the effective address field in the operation word. For
example, Figure 4 shows the general format of the single
effective address instruction operation word. The effective
address is composed of two 3-bit fields: the mode field, and
the register field. The value in the mode field selects the
different address modes. The register field contains the
number of a register.

The effective address field may require additional
information to fully specify the operand. This additional
information, called the effective address extension, is
contained in the following word or words and is considered
part of the instruction, as shown in Figure 3. The effective
address modes are grouped into three categories: register
direct, memory addressing, and special.

REGISTER DIRECT MODES

These effective addressing modes specify that the operand
is in one of the 16 multifunction registers.

Data Register Direct. The operand is in the data register

INSTRUCTION OPERATION WORD
GENERAL FORMAT
Figure 3

15 14 13 12 11 10 9 8

specified by the effective address register field.

Address Register Direct. The operand is in the address
register specified by the effective address register field.

MEMORY ADDRESS MODES

These effective addressing modes specify that the operand
is in memory and provide the specific address of the
operand.

Address Register Indirect. The address ofthe operand is in
the address register specified by the register field. The
reference is classified as a data reference with the
exception of the jump and jump to subroutine instructions.

Address Register Indirect With Postincrement. The
address of the operand is in the address register specified by
the register field. After the operand address is used, it is
incremented by one, two, or four depending upon whether
the size of the operand is byte, word, or long word. If the
address register is the stack pointer and the operand size is
byte, the address is incremented by two rather than one to
keep the stack pointer on a word boundary. The reference is
classified as a data reference.

Address Register Indirect With Predecrement. The
address of the operand is in the address register specified by
the register field. Before the operand address is used, it is
decremented by one, two, or four depending upon whether
the operand size is byte, word, or long word. If the address
register is the stack pointer and the operand size is byte, the
address is decremented by two rather than one to keep the
stack pointer on a word boundary. The reference is
classified as a data reference.

7 6 5 4 3 2 o
OPERATION WORD

(FIRST WORD SPECIFIES OPERATION AND MODES)

IMMEDIATE OPERAND
(IF ANY, ONE OR TWO WORDS)

SOURCE EFFECTIVE ADDRESS EXTENSION
(IF ANY, ONE OR TWO WORDS)

DESTINATION EFFECTIVE ADDRESS EXTENSION
(IF ANY, ONE OR TWO WORDS)

SINGLE-EFFECTIVE-ADDRESS INSTRUCTION
OPERATION WORD
Figure 4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
EFFECTIVE ADDRESS

MODE REGISTER

VI-6

Address Register Indirect With Displacement. This
address mode requires one word of extension. The address
of the operand is the sum of the address in the address
register and the sign-extended 16-bit displacement integer
in the extension word. The reference is classified as a data
reference with the exception of the jump and jump to
subroutine instructions.

Address Register Indirect With Index. This address mode
requires one word of extension. The address of the operand
is the sum of the address in the address register, the sign
extended displacement integer in the low order eight bits of
the extension word, and the contents of the index register.
The reference is classified as a data reference with the
exception of the jump and jump to subroutine instructions.

SPECIAL ADDRESS MODES

The special address modes use the effective address
register field to specify the special addressing mode instead
of a register number.

Absolute Short Address. This address mode requires one
word of extension. The address of the operand is the
extension word. The 1 6-bit address is sign extended before
it is used. The reference is classified as a data reference

EFFECTIVE ADDRESS ENCODING SUMMARY
Table 4

Addressing Mode Mode Register

Data Register Direct 000 register number

Address Register Direct 001 register number

Address Register Indirect 010 register number

Address Register Indirect
with Postincrement 011 register number

Address Register Indirect
with Predecrement 100 register number

Address Register Indirect
with Displacement 101 register number

Address Register Indirect
with Index 110 register number

Absolute Short 111 000

Absolute Long 111 001

Program Counter with
Displacement 111 010

Program Counter with
Index 111 011

Immediate or Status
Register 111 100

with the exception of the jump and jump to subroutine
instructions.

Absolute Long Address. This address mode requires two
words of extension. The address of the operand is developed
by the concatenation of the extension words. The high
order part of the address is the first extension word; the
low-order part of the address is the second extension word.
The reference is classified as a data reference with the
exception of the jump and jump to subroutine instructions.

Program Counter With Displacement. This address mode
requires one word of extension. The address of the operand
is the sum of the address in the program counter and the
sign-extended 16-bit displacement integer in the extension
word. The value in the program counter is the address of the
extension word. The reference is classified as a program
reference.

IMPLICIT INSTRUCTION REFERENCE SUMMARY
Table 5

Implied
Instruction Register(s)

Branch Conditional (Bcd, Branch
Always (BRA) PC

Branch to Subroutine (BSR) PC,SP

Check Register against Bounds (CHK) SSP, SR

Test Condition, Decrement and Branch
(DBed PC

Signed Divide (DIVS) SSP, SR

Unsigned Divide (DIVU) SSP, SR

Jump (JMP) PC

Jump to Subroutine (JSR) PC,SP

Link and Allocate (LINK) SP

Move Condition Codes (MOVE CCR) SR

Move Status Register (MOVE SR) SR

Move User Stack Pointer (MOVE USP) USP

Push Effective Address (PEA) SP

Return from Exception (RTE) PC,SP,SR

Return and Restore Condition Codes (RTR) PC, SP, SR

Return from Subroutine (RTS) PC,SP

Trap (TRAP) SSP, SR

Trap on Overflow (TRAPV) SSP, SR

Unlink (UNLK) SP

VI·7

II

Program Counter With Index. This address mode requires
one word of extension. The address is the sum of the
address in the program counter, the sign-extended
displacement integer in the lower eight bits of the extension
word, and the contents of the index register. The value in
the program counter is the address of the extension word.
This reference is classified as a program reference.

Immediate Data. This address mode requires either one or
two words of extension depending on the size of the
operation.

Byte operation - operand is low order byte of extension
word
Word operation - operand is extension word
Long word operation - operand is in the two extension
words, high-order 16 bits are in the first extension
word, low-order 16 bits are in the second extension
word.

Condition Codes or Status Register. A selected set of
instructions may reference the status register by means of
the effective address field. These are:

ANDI to CCR
ANDI to SR
EORI to CCR
EORI to SR
ORI to CCR
ORI to SR

EFFECTIVE ADDRESS ENCODING SUMMARY

Table 4 is a summary of the effective addressing modes
discussed in the previous paragraphs.

IMPLICIT REFERENCE

Some instructions make implicit reference to the program
counter (PC), the system stack pointer (SP), the supervisor
stack pointer (SSP), the user stack pointer (USP), or the
status register (SR). Table 5 provides a list of these
instructions and the registers implied.

SYSTEM STACK

The system stack is used implicitly by many instructions;
user stacks and queues may be created and maintained
through the addressing modes. Address register seven (A7)
is the system stack pointer (SP). The system stack pointer is
either the supervisor stack pointer (SSP) or the user stack
pointer (USP), depending on the state of the S-bit in the
status register. If the S-bit indicates supervisor state, SSP is
the active system stack pointer, and the USP cannot be
referenced as an address register. If the S-bit indicates user
state, the USP is the active system stack pointer, and the
SSP cannot be referenced. Each system stack fills from high
memory to low memory.

INSTRUCTION SET SUMMARY

The following paragraphs contain an overview of the form
and structure of the MK68000 instruction set. The

instructions form a set of tools that include all the machine
functions to perform the following operations:

Data Movement
Integer Arithmetic
Logical
Shift and Rotate
Bit Manipulation
Binary Coded Decimal
Program Control
System Control

The complete range of instruction capabilities combined
with the flexible addressing modes described· previously
provide a very flexible base for program development.

DATA MOVEMENT OPERATIONS

The basic method of data acquisition (transfer and storage)
is provided by the move (MOVE) instruction. The move
instruction and the effective addressing modes allow both
address and data manipulation. Data move instructions
allow byte, word, and long word operands to be transferred
from memory to memory, memory to register, register to
memory, and register to register. Address move instructions
allow word and long word operand transfers and ensure
that only legal address manipulations are executed. In
addition to the general move instruction there are several
special data movement instructions: move multiple
registers (MOVEM), move peripheral data (MOVEP),
exchange registers (EXG), load effective address (LEA),
push effective address (PEA), link stack (LINK), unlink stack
(UNLK), and move quick (MOVEO). Table 6 is a summary of
the data movement operations.

INTEGER ARITHMETIC OPERATIONS

The arithmetic operations include the four basic operations
of add (ADD), subtract (SUB), mUltiply (MUL), and divide
(DIV) as well as arithmetic compare (CMP), clear (CLR), and
negate (NEG). The add and subtract instructions are
available for both address and data operations, with data
operations accepting all operand sizes. Address operations
are limited to legal address size operands (16 or 32 bits).
Data, address, and memory compare operations are also
available. The clear and negate instructions may be used on
all sizes of data operands.

The multiply and divide operations are available for signed
and unsigned operands using word multiply to produce a
long word product, and a long word dividend with word
divisor to produce a word quotient with a word remainder.

Multiprecision and mixed size arithmetic can be accom
plished using a set of extended instructions. These
instructions are: add extended (ADDX), subtract extended
(SUBX), sign extend (EXT), and negate binary with extend
(NEGX).

A test operand (TST) instruction that will set the condition
codes as a result of a compare of the operand with zero is
also available. Test and set (TAS) is a synchronization

VI-8

instruction useful in multiprocessor systems. Table 7 is a
summary of the integer arithmetic operations.

DATA MOVEMENT OPERATIONS
Table 6

Instruction Size

EXG 32

LEA 32

LINK -

Operation

Rx-Ry

EA-- An

An -- -(SP)
SP -- An

SP + displacement -- SP
MOVE 8,16,32 (EA)s -- EAd

(EA) -- An, Dn
MOVEM 16,32 An, Dn -- EA

(EA)-- Dn
MOVEP 16,32 Dn -- EA

MOVEO 8 #xxx -- Dn

PEA 32 EA-- -(SP)

SWAP 32 Dn[31 :16] Dn[15:0]

UNLK -

NOTES:

s = source
d = destination
[] = bit numbers
-() = indirect with predecrement
()+ = indirect with postincrement
= immediate data

LOGICAL OPERATIONS

An -- Sp
(SP)+ -- An

Logical operation instructions AND, OR. EOR, and NOT are
available for all sizes of integer data operands. A similar set
of immediate instructions (ANDI, ORI, and EORI) provides
these logical operations with all sizes of immediate data.
Table 8 is a summary of the logical operations.

SHIFT AND ROTATE OPERATIONS

Shift operations in both directions are provided by the
arithmetic instructions ASR and ASL and logical shift
instructions LSR and LSL. The rotate instructions (with and
without extend) available are ROXA. ROXL, ROA. and ROL.
All shift and rotate operations can be performed in either
registers or memory. Register shifts and rotates support all
operand sizes and allow a shift count specified in the
instruction of one to eight bits, or 0 to 63 specified in a data
register.

INTEGER ARITHMETIC OPERATIONS
Table 7

Instruction Operand Size Operation

8,16,32 Dn + (EA) -- Dn
(EA) + Dn -- EA

ADD (EA) + #xxx -- EA
16,32 An + (EA) -- An

8,16,32 Dx + Dy + X -- Dx
ADDX 16,32 -(Ax) + -(Ay) + X -- (Ax)

CLR 8,16,32 0-- EA

8,16,32 Dn -(EA)
(EA) - #xxx

CMP -(Ax) - (Ay)+
16,32 An -(EA)

DIVS 32 -16 Dn/(EA) -- Dn

DIVU 32 -16 Dn/(EA) -- Dn

8 -- 16 (Dn)8 -- Dn16
EXT 16 -- 32 (Dn), 6 -- Dn32

MULS 16* 16 -- 32 Dn* (EA)- Dn

MULU 16* 16 -- 32 Dn* (EA) -- Dn

NEG 8,16,32 0- (EA) -- EA

NEGX 8,16,32 o - (EA) - X - EA

8,16,32 Dn - (EA) -- Dn
(EA) - Dn -- EA

SUB (EA) - #xxx -- EA
16,32 An - (EA) -- An

Dx - Dy - X -- Dx
SUBX 8,16,32 -(Ax) - - (Ay) - X - (Ax)

TAS 8 (EA) - 0,1 - EA[7]

TST 8,16,32 (EA)-O

NOTE: [] = bit number x = extend bit

Memory shifts and rotates are for word operands only and
allow only single-bit shifts or rotates.

Table 9 is a summary of the shift and rotate operations.

BIT MANIPULATION OPERATIONS

Bit manipulation operations are accomplished using the
following instructions: bit test (BTST), bit test and set (BSET),
bit test and clear (BCLR), and bit test and change (BCHG).
Table 10 is a summary of the bit manipulation operations.
(Bit 2 of the status register is Z.)

VI-9

•

LOGICAL OPERATIONS
Table 8

Instruction Operand Size Operation

DnA(EA) -- Dn
AND 8,16,32 (EA)ADn -- EA

(EA)A#xxx - EA

Dn v (EA) -- Dn
OR 8,16,32 (EA) v Dn -- EA

(EA) v #xxx - EA

(EA) a1 Dy - EA
EOR 8, 16,32 (EA) a1 #xxx - EA

NOT 8,16,32 -(EA) -- EA

NOTE: - = invert

BINARY CODED DECIMAL OPERATIONS

Multiprecision arithmetic operations on binary coded
decimal numbers are accompolished using the following
instructions: add decimal with extend (ABCD), subtract
decimal with extend (SBCD), and negate decimal with
extend (NBCD). Table 11 is a summary of the binary coded
decimal operations.

SHIFT AND ROTATE OPERATIONS
Table 9

Instruc- Operand
tion Size Operation

ASL 8,16,32 ~O

ASR 8,16,32 ~
LSL 8,16,32 ~O

LSR 8,16,32 O~

ROL 8,16,32 ~
ROR 8,16,32 ~
ROXL 8,16,32 co .. , I .. HXh
ROXR 8,16,32 rl x H - ',-' C I

BIT MANIPULATION OPERATIONS
Table 10

Instruction Operand Size Operation

BTST 8,32 - bit of (EA) - Z

- bit of (EA) -- Z
BSET 8,32 1 - bit of EA

- bit of (EA) - Z
BCLR 8,32 0- bit of EA

- bit of (EA) - Z
BCHG 8,32 - bit of (EA) - bit of EA

BINARY CODED DECIMAL OPERATIONS
Table 11

Operand
Instruction Size Operation

DXlO+DylO+X -- Dx
ABCD 8 -(Ax), a + -(Ay), a + X - (Ax)

DxlO - DylO - X -- Dx
SBCD 8 -(Ax), a - - (Ay),o - X -- (Ax)

NBCD 8 O-(EA),o-X- EA

PROGRAM CONTROL OPERATIONS

Program control operations are accomplished using a series
of conditional and unconditional branch instructions and
return instructions. These instructions are summarized in
Table 12.

The conditional instructions provide setting and branching
for the following conditions:

CC - carry clear
CS - carry set
EQ - equal

LS - low or same
LT - less than
MI - minus

F - never true NE - not equal
PL - plus GE - greater or equal

GT - greater than T - always true
VC - no overflow
VS - overflow

HI - high
LE - less or equal

PROGRAM CONTROL OPERATIONS
Table 12

Instruction Operation

Conditional

Bee Branch conditionally (14 conditions)
8- and 16-bit displacement

DBee Test condition, decrement, and branch
16-bit displacement

See Set byte conditionally (16 conditions)

Unconditional
BRA Branch always

8- and 16-bit displacement
BSR Branch to subroutine

8- and 16-bit displacement
JMP Jump
JSR Jump to subroutine

'Returns
RTR Return and restore condition codes
RTS Return from subroutine

VI-10

SYSTEM CONTROL OPERATIONS

System control operations are accomplished by using
privileged instructions, trap generating instructions, and
instructions that use or modify the status register. These
instructions are summarized in Table 13.

SIGNAL AND BUS OPERATION DESCRIPTION

The following paragraphs contain a brief description of the
input and output signals. A discussion of bus operation
during the various machine cycles and operations is also
given.

SIGNAL DESCRIPTION

The input and output signals can be functionally organized
into the groups shown in Figure 5. The following
paragraphs provide a brief description of the signals and
also a reference (if applicable) to other paragraphs that
contain more detail about the function being performed.

ADDRESS BUS (A1 THROUGH A23). This 23-bit,
unidirectional, three-state bus is capable of addressing 8
megawords of data. It provides the address for bus
operation during all cycles except interrupt cycles. During
interrupt cycles, address lines A 1, A2, and A3 provide
information about what level interrupt is being serviced
while address lines A4 through A23 are all set to a logic
high.

DATA BUS (DOTHROUGH D15). This 16-bitbidirectional,
three-state bus is the general purpose data path. It can
transfer and accept data in either word or byte length.
During an interrupt acknowledge cycle, the external device
supplies the vector number on data lines DO-D7.

ASYNCHRONOUS BUS CONTROL. Asynchronous data
transfers are handled using the following control signals:
address strobe, read/write, upper and lower data strobes,
and data transfer acknowledge. These signals are explained
in the following paragraphs.

INPUT AND OUTPUT SIGNALS
Figure 5

__ ~VczcI2~)_~-1------------~~ ____ ~~

GNDI2) ADDRESS BUS) A1·A23

A ~ CLK

DATA BUS 00-015

MICROPROCESSOR AS

RiW

--'f UEiS }-~"~~. BUS

LliS CONTROL

STATUS - FC2 DTACK

r E iiii
6Boo 17m iffi PERIPHERAL - }~ ~.-

CONTROL iiI'A BGACK
CONTROL

i!ERR jji[Q

~m.{ RESET iPri l~'"""~ CONTROL _
HALT .. iiiL2

CONTROL --

SYSTEM CONTROL OPERATIONS
Table 13

Instruction Operation

Privileged
RESET Reset external devices

RTE Return from exception
STOP Stop program execution

ORI to SR Logical OR to status register
MOVE USP Move user stack pointer
ANDI to SR Logical AND to status register
EORI to SR Logical EOR to status register

MOVE EA to SR Load new status register

Trap Generating
TRAP Trap

TRAPV Trap on overflow
CHK Check data register against upper

bounds
Status Register

ANDI to CCR Logical AND to condition codes
EORI to CCR Logical EOR to condition codes

MOVE EA to CCR Load new condition codes
ORI to CCR Logical OR to condition codes

MOVE SR to EA Store status register

Address Strobe (AS). This signal indicates that there is a
valid address on the address bus.

Read/Write (R/W). This signal defines the data bus
transfer as a read or write cycle. The R/W signal also works
in conjunction with the upper and lower data strobes as
explained in the following paragraph.

Upper And Lower Data Strobes (UDS, LDS). These
signals control the data on the data bus, as shown in Table
14. When the R/W line is high, the processor will read from
the data bus as indicated. When the R/W line is low, the
processor will write to the data bus as shown.

Data Transfer Acknowledge (DTACK). This input
indicates that the data transfer is completed. When the
processor recognizes DT ACK during a read cycle, data is
latched and the bus cycle terminated. When DTACK is
recognized during a write cycle, the bus cycle is terminated.

An active transition of data transfer acknowledge, DTACK,
indicates the termination of a data transfer on the bus.

If the system must run at a maximum rate determined by
RAM access times, the relationship between the times at
which DTACK and DATA are sampled are important.

VI-11

•

All control and data lines are sampled during the
MK68000's clock high time. The clock is internally buffered,
which results in some slight differences in the sampling and
recognition of various signals. The DTACK signal, like other

OATA STROBE CONTROL OF OATA BUS
Table 14

UOS LOS R/W 08-015 00-07

High High - No valid data No valid data

Low Low High Valid data bits Valid data bits
8-15 0-7

Valid data bits
High Low High No valid data 0-7

Valid data bits
Low High High 8-15 No valid data

Valid data bits Valid data bits
Low Low Low 8-15 0-7

Valid data bits Valid data bits
High Low Low 0-7* 0-7

Valid data bits Valid data bits
Low High Low 8-15 8-15*

*These conditions are a result of current implementation
and may not appear on future devices.

control signals, is internally synchronized to allow for valid
operation in an asynchronous system. If the required setup
time (#47) is met during 54, DTACK will be recognized
during 55 and 56, and data will be captured during 56. The
data must meet the required setup time (#27).

If an asynchronous control signal does not meet the
required setup time, it is possible that it may not be
recog n ized du ri ng that cycle. Beca use of th is, asynch ronous
systems must not allow DTACK to precede data by more
than parameter #31.

Asserting DTACK (or BERR) on the rising edge of a clock
(such as 54) after the assertion of address strobe will allow
an MK68000 system to run at its maximum bus rate. If
setup times #27 and #47 are guaranteed, #31 may be
ignored. If DTACK and BERR are asserted at the same time,
the MK68000 will recognize the BERR and abort the cycle.

BUS ARBITRATION CONTROL. These three signals
form a bus arbitration circuit to determine which device will
be the bus master device.

Bus Request (BR). This input is write ORed with all other
devices that could be bus masters. This input indicates to
the processor that some other device desires to become the
bus master.

Bus Grant (BG). This output indicates to all other potential
bus master devices that the processor will release bus

control at the end of the current bus cycle.

Bus Grant Acknowledge (BGACK). This input indicates
that some other device has become the bus master. This
signal cannot be asserted until the following four conditions
are met:

1. a bus grant has been received
2. address strobe is inactive which indicates that the

microprocessor is not using the bus
3. data transfer acknowledge is inactive which indicates

that either memory or the peripherals are not using the
bus

4. bus grant acknowledge is inactive which indicates that
no other device is still claiming bus mastership

INTERRUPT CONTROL (lPLO, IPL 1, IPL2). These input
pins indicate the encoded priority level of the device
requesting an interrupt. Level seven is the highest priority
while level zero indicates that no interrupts are requested.
The least significant bit is given in IPLO and the most
significant bit is contained in IPL2. These lines must remain
stable until the processor signals interrupt acknowledge
(FCO-FC2 are all high) to insure that the interrupt is
recognized.

SYSTEM CONTROL. The system control inputs are used
to either reset or halt the processor and to indicate to the
processor that bus errors have occurred. The three system
control inputs are explained in the following paragraphs.

Bus Error (BERR). This input informs the processor that
there is a problem with the cycle currently being executed.
Problems may be a result of:

1. nonresponding devices
2. interrupt vector number acquisition failure
3. illegal access request as determined by a memory

management unit
4. other application dependent errors.

The bus error signal interacts with the halt signal to
determine if exception processing should be performed or
the current bus cycle should be retried.

Referto BUS ERROR AND HALT OPERATION paragraph for
additiona I information about the interaction of the bus error
and halt signals.

Reset (RESET). This bidirectional signal line acts to reset
(initiate a system initialization sequence) the processor in
response to an external reset Signal. An internally
generated reset (result of RESET instruction) causes all
external devices to be reset and the internal state of the
processor is not affected. A total system reset (processor
and external devices) is the result of external halt and reset
signals applied at the same time. Refer to RESET
OPERATION paragraph for additional information about
reset operation.

Halt (HALT). When this bidirectional line is driven by an
external device, it will cause the processor to stop at the
completion of the current bus cycle. When the processor

VI-12

FUNCTION CODE OUTPUTS
Table 15

FC2 FC1 FCO

Low Low Low
Low Low High
Low High Low
Low High High
High Low Low
High Low High
High High Low
High High High

SIGNAL SUMMARY
Table 16
r--"

Signal Name

Address Bus

Data Bus

Address Strobe

Read/Write

Cycle Type

(Undefined, Reserved)
User Data

User Program
(Undefined, Reserved)
(Undefined, Reserved)

Supervisor Data
Supervisor Program

Interrupt Acknowledge

Mnemonic

A1-A23

DO-D15

AS

R/W

Upper and Lower Data Strobes UDS, LDS

Data Transfer Acknowledge DTACK

Bus Request BR

Bus Grant BG

Bus Grant Acknowledge BGACK

Interrupt Priority Level IPLO, IPL 1, IPL2

Bus Error BERR

Reset RESET

Halt HALT

Enable E

Valid Memory Address VMA

Valid Peripheral Address VPA

Function Code Output FCO, FC1,FC2

Clock CLK

Power Input Vee

Ground GND

* open drain

has been halted using this input, all control signals are
inactive and all three-state lines are put in their high
impedance state. Refer to BUS ERROR AND HALT
OPERATION paragraph for additional information about the
interaction between the halt and bus error signals.

When the processor has stopped executing instructions,
such as in a double bus fault condition, the halt line is driven
by the processor to indicate to external devices that the
processor has stopped.

6800 PERIPHERAL CONTROL. These control signals are
used to allow the interfacing of synchronous 6800
peripheral devices with the asynchronous MK68000.
These signals are explained in the following paragraphs.

Three State
Input/Output Active State On HALT On BGACKI

output high yes yes II
input/output high yes yes

output low no yes

read-high
output write-low no yes

output low no yes

input low no no

input low no no

output low no no

input low no no

input low no no

input low no no

input/output low no* no*

input/ output low no* no*

output high no no

output low no yes

input low no no

output high no yes

input high no no

input - - -

input - - -

VI-13

WORD READ CYCLE FLOW CHART
Figure 6

BUS MASTER SLAVE

Address Device

1) Set R/W to Read
2) Place Function Code on FCO-FC2
3) Place Address on A1-A23
4) Assert Address Strobe (AS)
5) Assert Upper Data Strobe (UDS) and Lower

Data Strobe (LDS)

I

Acquire Data

1) latch Data
2) Negate UDS and LDS
3) Negate AS

Start Next Cycle

Input Data

1) Decode Address
2) Place Data on DO-D15
3) Assert Data Transfer

Acknowledge (DTACK)

Terminate Cycle

1) Remove Data from DO-D15
2) Negate DTACK

I

Enable (E). This signal is the standard enable signal
common to all 6800 type peripheral devices. The period for
this output is ten MK68000 clock periods (six clocks low;
four clocks high). Enable is generated by an internal ring
counter which maycome up in any state. (Le., at power on, it
is impossible to guarantee phase relationship of E to CLK). E
is a free-running clock and runs regardless of the state of
the bus on the MPU.

Valid Peripheral Address (VPA). This input indicates that
the device or region addressed is a 6800 family device and
that data transfer should be synchronized with the enable
(E) signal. This input also indicates that the processor should
use automatic vectoring for an interrupt. Refer to
INTERFACE WITH 6800 PERIPHERALS.

Valid Memory Address (VMA). This output is used to
indicate to 6800 peripheral devices that there is a valid
address on the address bus and the processor is
synchronized to enable. This signal only responds to a valid
peripheral address (VPA) input which indicates that the
peripheral is a 6800 family device.

PROCESSOR STATUS (FCO, FC1, FC2). These function
code outputs indicate the state (user or supervisor) and the
cycle type currently being executed, as shown in Table 15.

BYTE READ CYCLE FLOW CHART
Figure 7

BUS MASTER

Address Device

1) Set R/Vii to Read
2) Place Function Code on FCO-FC2
3) Place Address on A1-A23
4) Assert Address Strobe (AS)
5) Assert Upper Data Strobe (UDS) or Lower

Data Strobe (LDS) (based on AO)

I

SLAVE

1) Decode Address

Acquire Data

1) Latch Data
2) Negate UDS or LDS
3) Negate AS

2) Place Data on DO-D7 or D8-D15
(based on ODS or LDS)

3) Assert Data Transfer Acknowledge
(DTACK)

Terminate Cycle

1) Remove Data from DO-D7 or D8-D15
2) Negate DTACK

Start Next Cycle

The information indicated by the function code outputs is
valid whenever address strobe (AS) is active.

CLOCK (ClK). The clock input is a TTL compatible signal
that is internally buffered for development of the internal
clocks needed by the processor. The clock input should not
be gated off at any time, and the clock signal must conform
to minimum and maximum pulse width times.

SIGNAL SUMMARY. Table 16 is a summary of all the
signals discussed in the previous paragraphs.

BUS OPERATION

The following paragraphs explain control signal and bus
operation during data transfer operations, bus arbitration,
bus error and halt conditions, and reset operation.

DATA TRANSFER OPERATIONS. Transfer of data
between devices involves the following leads:

• Address Bus A 1 through A23
• Data Bus DO through D15
• Control Signals

The address and data buses are separate parallel buses

VI-14

READ AND WRITE CYCLE TIMING DIAGRAM
Figure 8

50 51 5253545556 5750 515253 54 55 5657 50 515253 54 w

ClK

~~~------~~~------~~~------------~~ 
~ ____________ ~r--

A1-A23 

\ / \ A5 

U05 \ 
l05 \ 
R/W \ 
OTACK \ / 
08-015 ( ) 

00-07 ( ) 
FCO-2 ~ X 

\ / 
\ / 

\ 
\ 

I 
/ 
) <== 

_____ .-JI ,-
r 

-----=========:..~ 

) ( 

X ~--============~~ ~--------------------~~ 

~-------REAO- -- - ---~- - - - -WRITE' - - -.rc- ---- --5l0W READ - - -- - ----~ 

WORD AND BYTE READ CYCLE TIMING DIAGRAM 
Figure 9 

50 51 52 53545556 5750 515253 54 55 5657 50 515253 5455 56 57 

ClK 

A1-A23 H H 
AO* I I 
A5 \ I \ r-
U05 \ I \ r-
l05 \ / / 
R/w 

OTACK \ / \ / \ I 
08-015 ( ) C >--
00-07 ( ) ) 
FCO-2 =x X X )-

*Internal 5ignal Only 

~-- WORD READ ----~--OOO BYTE REAO---~ --EVEN BYTE READ--~ 

used to transfer data using an asynchronous bus structure. 
In all cycles, the bus master assumes responsibility for 
deskewing all signals it issues at both the start and end of a 
cycle. In addition, the bus master is responsible for 
deskewing the acknowledge and data signals from the slave 
device. 

The following paragraphs explain the read, write, and read
modify-write cycles. The indivisible read-modify-write cycle 
is the method used by the MK68000 for interlocked 
mUltiprocessor communications. 

NOTE 

The terms assertion and negation will be used extensively. 
This is done to avoid confusion when dealing with a mixture 
of "active-low" and "active-high" signals. The term assert 

or assertion is used to indicate that a signal is active or true 
independent of whether that voltage is low or high. The 
term negate or negation is used to indicate that a signal is 
inactive or false. 

Read Cycle. During a read cycle, the processor receives 
data from memory or a peripheral device. The processor 
reads bytes of data in all cases. If the instruction specifies a 
word (or double word) operation, the processor reads both 
bytes. When the instruction specifies byte operation, the 
processor uses an internal AO bit to determine which byte to 
read and then issues the data strobe required for that byte. 
For byte operations, when the AO bit equals zero, the upper 
data strobe is issued. When the AO bit equals one, the lower 
data strobe is issued. When the data is received, the 
processor correctly positions it internally. 

VI-15 

II 



WORD WRITE CYCLE FLOW CHART 
Figure 10 

BUS MASTER SLAVE 

Address Device 

1) Place Function Code on FCO-FC2 
2) Place Address on A 1-A23 
3) Assert Address Strobe O~S) 
4) Set R/W to Write 
5) Place Data on 00-015 
6) Assert Upper Data Strobe (UOS) and 

Lower Data Strobe (LOS) 

t 
Terminate Output Transfer 

1) Negate UOS and LOS 
2) Negate AS 
3) Remove Data from 00-015 
4) Set R/W to Read 

I 

Start Next Cycle 

1 ) Decode Address 
2) Store Data on 00-015 
3) Assert Data Transfer Acknowledge 

(OTACK) 

Terminate Cycle 

1) Negate OT ACK 

I 

WORD AND BYTE WRITE CYCLE TIMING DIAGRAM 
Figure 12 

BYTE WRITE CYCLE FLOW CHART 
Figure 11 

BUS MASTER 

Address Device 

1) Place Function Code on FCO-FC2 
2) Place Address on A 1-A23 
3) Assert Address Strobe (AS) 
4) Set R/W to Write 
5) Place Data on 00-07 or 08-015 (according 

toAO) 
6) Assert Upper Data Strobe (UOS) or Lower 

Data Strobe (LOS) (based on AO) 
I 

1 ) Decode Address 

SLAVE 

2) Store Data on 00-07 if LOS is asserted 
Store Data on 08-015 if UOS is asserted 

t 
3) Assert Data Transfer Acknowledge 

(OTACK) 

Terminate Output Transfer 

1) Negate UOS and LOS 
2) Negate AS 
3) Remove Data from 00-07 or 08-015 
4) Set R/Vii to Read 

I 

Terminate Cycle 

1 ) Negate OT ACK 

I 

Start Next Cycle 

50 51 5253545556 5750 515253 54 55 5657 50 515253 54S5 56 57 

CLK 

AO* 

AS ~ / \ I 
U05 / 'L---.! 
L05 / 
R/W F\ 1\ {\ r 
OTACK / \ / \ I 

) ) > 
I ) ) 

X X > 

08-015 ~;::===========\ __ ----< 

00-07 ~===~--========~ 
FCO-2 )( _______ ~ 

*Internal 5ignal Only 

1'--- - - WORD WRITE - -- --~- -ODD BYTE WRITE ----- +----EVEN BYTE WRITE - - --~ 

VI-16 



READ-MODIFY-WRITE CYCLE FLOW CHART 
Figure 13 

BUS MASTER 
Address Device 

1) Set R/W to Read 
2) Place Function Code on FCO-FC2 
3) Place Address on A 1-A23 
4) Assert Address Strobe (AS) 
5) Assert Upper Data Strobe (UOS) or Lower 

SLAVE 

Data Strobe (LOS) LI ___________________ ---, ,. 
Input Data 

1) Decode Address 
2) Place Data on 00-07 or 08-015 
3) Assert Data Transfer Acknowledge 

(DTACK) I 

1) Latch Data 
2) Negate 015S or LOS 
3) Start Data Modification 

I . 

Terminate Cycle 

1) Remove Data from 00-07 or 08-015 
2) Negate oTACK 

Start Output Transfer 

1) Set R/W to Write 
2) Place Data on 00-07 or 08-015 
3) Assert Upper Data Strobe (UfiS) or Lower 

Data Strobe ([[is) LI ___________________ --." 

Terminate Output Transfer 

1) Negate iJl5!: or [[is 
2) Negate AS 
3) Remove Data from 00-07 or 08-015 
4) Set R/IN to Read 

Start Next Cycle 

A word read cycle flowchart isgiven in Figure 6. A byte read 
cycle flow chart is given in Figure 7. Read cycle timing is 
given in Figure 8 and Figure 9 details word and byte read 
cycle operation. 

Write Cycle. During a write cycle, the processor sends data 
to memory or a peripheral device. The processor writes 
bytes of data in all cases. If the instruction specifies a word 
operation, the processor writes both bytes. When the 
instruction specifies a byte operation, the processor uses an 
internal AO bit to determine which byte to write and then 
issues the data strobe required for that byte. For byte 
operations, when the AO bit equals zero, the upper data 
strobe is issued. When the AO bit equals one, the lower data 
strobe is issued. A word write cycle flow chart is given in 
Figure 10. A byte write cycle flowchart is given in Figure 11. 
Write cycle timing is given in Figure 8 and Figure 12 details 
word and byte write cycle operation. 

Input Data 

1) Store Data on 00-07 or 08-015 
2) Assert Data Transfer Acknowledge 

(OTACK) 

Terminate Cycle 

1) Negate OTACK 
I 

Read-Modify-Write Cycle. The read-modify-write cycle 
performs a read, modifies the data in the arithmetic-logic 
unit, and writes the data back to the same address. In the 
MK68000 this cycle is indivisible in that the address strobe 
is asserted throughout the entire cycle. The test and set 
(TAS) instruction uses this cycle to provide meaningful 
communication between processors in a mUltiple processor 
environment. This instruction is the only instruction that 
uses the read-modify-write cycles and since the test and set 
instruction only operates on bytes, all read-modify-write 
cycles are byte operations. A read-modify-write cycle flow 
chart is given in Figure 13 and a timing diagram is given in 
Figure 14. 

BUS ARBITRATION. Bus arbitration is a technique used 
by master-type devices to request, be granted, and 
acknowledge bus mastership. In its simplest form, it 
consists of: 

VI-17 

• 



READ-MODIFY-WRITE CYCLE TIMING DIAGRAM 
Figure 14 

50 51 52 53 54 55 56 57 58 59510511512513514515516517518519 

ClK 

A1-A23 

AS 

UDS or lOS 

R/W ----~========~-~-_-_-_~-_-_~~-_~==~ ____ ~r____ 
DTACK \ r____ 

(~~~~ ~~~~L _ 
08-015 r---
FCO-2 J'--___________________ >C 

I-oc----- - - --- -- -- INDIVISIBLE CYCLE - - - - - - - - - - - --.J 

1. Asserting a bus mastership request. 
2. Receiving a grant that the bus is available at the end of 

the current cycle. 
3. Acknowledging that mastership has been assumed. 

Figure 15 is a flow chart showing the detail involved in a 
request from a single device. Figure 16 is a timing diagram 
for the same operations. This technique allows processing 
of bus requests during data transfer cycles. 

The timing diagram shows that the bus request is negated 
at the time that an acknowledge is asserted. This type of 
operation would be true for a system consisting of the 
processor and one device capable of bus mastership. In 
systems having a number of devices capable of bus 
mastership, the bus request line from each device is wire 
ORed to the processor. In this system, it is easy to see that 
there could be more than one bus request being made. The 
timing diagram shows that the bus grant signal is negated a 
few clock cycles after the transition of the acknowledge 
(BGACK) signal. 

However, if the bus requests are still pending, the processor 
will assert another bus grantwithin a few clock cycles after 
it was negated. This additional assertion of bus grant allows 
external arbitration circuitry to select the next bus master 
before the current bus master has completed its 
requirements. The following paragraphs provide additional 
information about the three steps in the arbitration process. 

Requesting the Bus. External devices capable of becoming 
bus masters request the bus by asserting the bus request 
(BR) signal. This is a wire ORed signal (although it need not 
be constructed from open collector devices) that indicates to 
the processor that some external device requires control of 
the external bus. The processor is effectively at a lower bus 
priority level than the external device and will relinquish the 
bus after it has completed the last bus cycle it has started. 

When no acknowledge is received before the bus request 
signal goes inactive, the processor will continue processing 
when it detects that the bus request is inactive. This allows 

BUS ARBITRATION CYCLE FLOW-CHART 
Figure 15 

PROCESSOR REQUESTING DEVICE 

Request the Bus 

1) Assert Bus Request (Bri) 

Grant Bus Arbitration 

1) Assert Bus Grant (BG) 
I 

Acknowledge Bus Mastership 

1 ) External arbitration determines next bus 
master 

2) Next bus master waits for current cycle to 
complete 

3) Next bus master asserts Bus Grant 
Acknowledge (BGACK) to become new 
master 

4) Bus master negates SA 
I 

Terminate Arbitration 

1) Negate 1m (and wait for BGACK to be 
. negated) 

Operate as Bus Master 

1) Perform Data Transfers (Read and Write 
cycles) according to the same rules the pro-
cessor uses. 

Release Bus Mastership 

1) Negate BGACK 

Re-Arbitrate or Resume Processor 
Operation 

ordinary processing to continue if the arbitration circuitry 
responded to noise inadvertently. 

Receiving the Bus Grant. The processor asserts bus grant 
(BG) as soon as possible. Normally this is immediately after 
internal synchronization. The only exception to this occurs 
when the processor has made an internal decision to 
execute the next bus cycle but has not progressed far 
enough into the cycle to have asserted the address strobe 

VI-18 



BUS ARBITRATION CYCLE TIMING DIAGRAM 
Figure 16 

ClK 

A1-A23 

AS 

lDS/UDS 

R/iN 

DTACK 

00-015 

FCO-2 

BR 

BG 

BGACK \~----------------
PROCESSOR --~ -- DMA DEVICE--~-- -- -PROCESSOR - -- -...j...f- -- DMA DEVICE - ---

(AS) signal. In this case, bus grant will not be asserted until 
one clock after address strobe is asserted to indicate to 
external devices that a bus cycle is being executed. 
The bus grant signal may be routed through a daisy-chained 
network or through a specific priority-encoded network. The 
processor is not affected by the external method of 
arbitratio'" as long as the protocol is obeyed. 

Acknowledgement of Mastership. Upon receiving a bus 
grant, the requesting device waits until address strobe, data 
transfer acknowledge, and bus grant acknowledge are 
negated before issuing its own BGACK. The negation of the 
address strobe indicates that the previous master has 
completed its cycle, the negation of bus grant acknowledge 
indicates that the previous master has released the bus. 
(While address strobe is asserted no device is allowed to 
"break into" a cycle.) The negation of data transfer 
acknowledge indicates the previous slave has terminated 
its connection to the previous master. Note that in some 
applications data transfer acknowledge might not enter into 
this function. General purpose devices would then be 
connected such that they were only dependent on address 
strobe. When bus grant acknowledge is issued the device is 
bus master until it negates bus grant acknowledge. Bus 
grant acknowledge should not be negated until after the bus 
cycle(s) is (are) completed. Bus mastership is terminated at 
the negation of bus grant acknowledge. 

The bus request from the granted device should be dropped 
when bus grant acknowledge is asserted. If bus request is 
still asserted after bus grant acknowledge is negated, the 
processor performs another arbitration sequence and 
issues another bus grant. Note that the processor does not 
perform any external bus cycles before it re-asserts bus 
grant. 

BUS ARBITRATION CONTROl. The bus arbitration 
control unit in the MK68000 is implemented with a finite 
state machine. A state diagram of this machine is shown in 
Figure 17. All asynchronous signals to the MK68000 are 

STATE DIAGRAM OF MK68000 BUS 
ARBITRATION UNIT 
Figure 17 RA 

R = Bus Request Internal 
A = Bus Grant Acknowledge Internal 
G = Bus Grant 
T = Three-state Control to Bus Control logic** 
X = Don't Care 

*State machine will not change state if bus is in SO. Refer to 
BUS ARBITRATION CONTROL for additional information. 

**The address bus will be placed in the high impedance state if T is 
asserted and AS is negated. 

synchronized before being used internally. This synchro
nization is accomplished in a maxim.um of one cycle of the 
system clock, assuming that the asynchronous input setup 
time (#47) has been met. The input signal issampled onthe 
falling edge of the clock and is valid internally after the next 
falling edge. 

As shown in Figure 17, input signals labeled R and A are 
internally synchronized on the bus request and bus grant 
acknowledge pins respectively. The bus grant output is 
labeled G and the internal three-state control signal T. 1ft is 
true, the address, data, and control buses are placed in a 

VI-19 

II 



BUS ARBITRATION DURING PROCESSOR BUS CYCLE 
Figure 18 

BUS THREE STATED--------i' BUS RELEASED FROM THREE STATE AND 
BG ASSERTED PROCESSOR STARTS NEXT BUS CYCLE 
BR VALID INTERNAL irnACR NEGATED INTERNAL 
BR SAMPLED BGACK SAMPLED 
BR ASSERTED BGACK NEGATED 

CLK 
SO S1 S2 S3 S4 S5 S6 S7 SO S1 S2 S3 S4 S5 S6 S7 SO S1 

BR --------~\ J 
BG==========~~~~~~~':::~=~ __ ~/~-----------------------------

BGACK \'-. _____ -11 
A 1-A23 ==~~~~-=~ _____ -;;:.)~------------~~(==::;:--______ -;::!----C 

AS \\-___ -JI' ,\-___ -Jr__ 
UOS ------~,'-______ f'------------------~~~ ___ ~r__ 
lOS '~ ______ r-'~----------------~~~ ______ ~I 

FCO-FC2 ==:x ) ( 
R/VV 

DTACK '----1 
00-015 ---------«'-___ ---' 

PROCESSOR • 

BUS ARBITRATION WITH BUS INACTIVE 
Figure 19 

ALTERNATE BUS MASTER 

,'---;::::=.r__ __ 

PROCESSOR 

BUS RELEASED FROM THREE STATE AND PROCESSOR STARTS NEXT BUS CYCLE ----~ 
BGACKNEGATED------------------______ ~ 
BG ASSERTED AND BUS THREE STATED ----. 
BR VALID INTERNAL-------..... 
BR SAMPLED --------...... 
BR ASSERTED --------:1.. 

ClK 

SO S 1 S2 S3 S4 S5 S6 S7 SO S1 S2 S3 S4 

SA \ 1 
BG -------------~======~\-~ I~----------------

BGACK \'-_____ ~J 
A1-A23 _--{~==~ ____ --;:-?'--_ -_ -_ -_ -_ -_ -_ -_ -_ -_-~ -----------------I(L_-.--_ 

AS \~ ______ ~I '----------------~ 
UOS ----..\ I~---------" ~ 

LOS , ( ~ 

FCO-FC2 J>---___________ ),-------------\,.( ___ _ 
R/VV--------------------~ '--_______________ -J 

~ --------~'----I 

00-015 ------.[(~---------~-]_!)~==:_::_---===~~==----===::_ 
PROCESSOR .. I. BUS INACTIVE .. I.. ALTERNATE BUS MASTER ... 1 :ROCESSOR .. • 

VI·20 



high-impedance state when AS is negated. All signals are 
shown in positive logic (active high) regardless of their true 
active voltage level. 

State changes (valid outputs) occur on the next rising edge 
after the internal signal is valid. 

A timing diagram of the bus arbitration sequence during a 
processor bus cycle is shown in Figure 18. The bus 
arbitration sequence while the bus is inactive (i.e., 
executing internal operations such as a multiply instruction) 
is shown in Figure 19. 

If a bus request is made at a time when the MPU has already 
begun a bus cycle but AS has not been asserted (bus state 
SO), BG will not be asserted on the next rising edge. Instead, 
BG will be delayed until the second rising edge following its 
internal assertion. This sequence is shown in Figure 20. 

BUS ARBITRATION SPECIAL CASE 
Figure 20 

BUS ERROR AND HALT OPERATION. In a bus 
architecture that requires a handshake from an external 
device, the possibility exists that the handshake might not 
occur. Since different systems will require a different 
maximum response time, a bus error input is provided. 
External circuitry must be used to determine the duration 
between address strobe and data transfer acknowledge 
before issuing abus error signal. When a bus error signal is 
received, the processor has two options: initiate a bus error 
exception sequence or try running the bus cycle again. 

Exception Sequence. When the bus error signal is 
asserted, the current bus cycle is terminated. If BEAR is 
asserted before the falling edge of 52, AS will be negated in 
57 in either a read or write cycle. As long as BERR remains 
asserted, the data and address buses will be in the high
impedance state. When the BERR is negated, the processor 
will begin stacking for exception processing. The bus error 
exception sequence is entered when the processor receives 

BUSTHREESTATED--------~ 
BG ASSERTED-----, 
BR VALID INTERNAL 
BR SAMPLED 

BUS RElEASED FROM THREE STATE AND 
PROCESSOR STARTS NEXT BUS CYCLE 

SA ASSERTED BGACK SAMPLED ~ 
BGACK NEGATED INTERNAL l 
BGACK NEGATED + + 

CLK 

BR \~ ___________ ....JI 

BGACK 
----------~\~==~----~I 

\ I 
A1.A23~ ) ( >-C 

AS -1 \ I' ~ r-
UDS -.! \ I' 
LOS -1 \ I' ~ r-

FCO-FC2 ~ ~ 
R/W ---1 

DTACK -1 '----l \ r-
00-015 .. PROCESSOR -I" ALTERNATE BUS MASTER -I" ~ROCESSOR ----+-

BUS ERROR TIMING DIAGRAM 
Figure 21 

CLK 

A1-A23 

~ 

UDS 

~ 

R/VV 

OTACK 

08-015 

00-07 

FCO-2 

BlAR 

HALT 

(~====================~~~====== 
< ~~~~~~ 

\ ~ 
INITIATE RESPONSE BUS ERROR: ~J-~ ------IN-IT-I-A-TE--B-US---

!-CREAD ...... - - --FAiiuR-E--- - - ..... - - --,... -OETECTION---- - - -~RRORSTACi<ING 

VI·21 

II 



RE-RUN BUS CYCLE TIMING INFORMATION 
Figure 22 SO 

CLK 

AS \ / 
iJDS \ / 
lOS \ / 
R/W 

oTACK \ r-
08-015 ) ~----------------------~( r--
00-07 ) ( ~ 
FCO-2 :=x X x:= 

____ ---.; x. " 1 CLOCK PERIODj~ _______________ _ 

f-oiI------- REAO--------t-c-----------HALT --------------~------ RERUN -------~ 

HALT SIGNAL TIMING CHARACTERISTICS 
Figure 23 

ClK 

AS \ / \'-------' 
UoS \ ! ------------~\ ,I 

lOS \ " ,,--
R/Vii 

oTACK I \ jr--

08-015 -.J ~------------------~( ~ 
00-07 j------------------~c======r___ 
FCO-2 =x ~ 
HALT 

/.-- --- READ - - - - -...;....- - - -- -- HALT - -- - - - - - ~- - - - - READ --- - --..j 

a bus error signal and the halt pin is inactive, Figure 21 is a 
timing diagram for the exception sequence. The sequence 
is composed of the following elements: 

1. Stacking the program counter and status register 
2. Stacking the error information 
3. Reading the bus error vector table entry 
4. Executing the bus error handler routine 

The stacking of the program counter and the status register 
is the same as if an interrupt had occurred. Several 
additional items are stacked when a bus error occurs. These 
items are used to determine the nature of the error and 
correct it. if possible. The bus error vector is vector number 
two located at address $000008. The processor loads the 
new program counter from this location. A software bus 
error handler routine is then executed by the processor. 
Refer to EXCEPTION PROCESSING for additional information. 

Re-Running the Bus Cycle. When the processor receives a 
bus error signal and the halt pin is being driven by an 
external device, the processor enters the re-run sequence. 
Figure 22 is a timing diagram for re-running the bus cycle. 

The processor terminates the bus cycle, then puts the 
address and data lines in the high-impedance state. The 
processor remains "halted," and will not run another bus 
cycle until the halt signal is removed by external logic. Then 
the processor will re-run the previous bus cycle using the 
same address, the same function codes, the same data (for 
a write operation), and the same controls. The bus error 
signal should be removed at least one clock cycle before the 
halt signal is removed. 

NOTE 

The processor will not re-run a read-modify-write cycle. 
This restriction is made to guarantee that the entire cycle 
runs correctly and that the write operation of a Test-and-Set 
operation is performed without ever releasing AS. If BERR 
and RACT are asserted during a read-modify-write bus 
cycle, a bus error operation results. 

Halt Operation with No Bus Error. The halt input signal to 
the MK68000 performs a Halt/Run/Single-Step function. 
The halt and run modes are somewhat self explanatory in 
that when the halt signal is constantly active the processor 

VI·22 



RESET OPERATION TIMING DIAGRAM 
Figure 24 

ClK 

PLUS 5 VOLTS 

Vee 
t - > 100 

RES'E'i' 
1+- - MilLISECONDS -+1,--__________ _ 

1~ __________________ ~1 

HALT 

~ t<4ClOCKS 
BUS CYCLES 

2 3 4 5 6 
NOTES: 

1 ) Internal start-up time Bus State Unknown: ~ 
2) SSP High read in here 
3) SSP low read in here All Control Signals Inactive "----I 

Data Bus In Read Mode: ~ 4) PC High read in here 
5) PC low read in here 
6) First instruction fetched here. 

"halts" (does nothing) and when the halt Signal is 
constantly inactive the processor "runs" (does something). 

The single-step mode is derived from correctly timed 
transitions on the halt Signal input. It forces the processor to 
execute a single bus cycle by entering the "run" mode until 
the processor starts a bus cycle then changing to the "halt" 
mode. Thus, the single-step mode allows the user to 
proceed through (and therefore debug) processor opera
tions one bus cycle at a time. 

Figure 23 details the timing required for correct single-step 
operations. Some care must be exercised to avoid harmful 
interactions between the bus error signal and the halt pin 
when using the single cycle mode as a debugging tool. This 
is also true of interactions between the halt and reset lines, 
since these can reset the machine. 

When the processor completes a bus cycle after recognizing 
that the halt signal is active, most three-state signals are put 
in the high-impedance state. These include: 

1. address lines 
2. data lines 

This is required for correct performance of the re-run bus 
cycle operation. 

While the processor is honoring the halt request, bus 
arbitration performs as usual. That is, halting has no effect 
on bus arbitration. It is the bus arbitration function that 
removes the control signals from the bus. 

The halt function and the hardware trace capability allow 
the hardware debugger to trace single bus cycles or single 
instructions at a time. These processor capabilities, along 
with a software debugging package, give total debugging 
flexibility. 

Double Bus Faults. When a bus error exception occurs, the 
processor will attempt to stack several words containing 
information about the state of the machine. If a bus error 
exception occurs during the stacking operation, there have 
been two bus errors in a row. This is commonly referred to 

VI-23 

as a double bus fault. When a double bus fault occurs, the 
processor will halt. Once a bus error exception has 
occurred, any bus error exception occurring before the 
execution of the next instruction constitutes a double bus 
fault. 

Note that a bus cycle which is re-run does not constitute a 
bus error exception, and does not contribute to a double bus 
fault. Note also that this means that as long as the external 
hardware requests it, the processor will continue to re-run 
the same bus cycle. 

The bus error pin also has an effect on processor operation 
after the processor receives an external reset input. The 
processor reads the vector table after a reset to determine 
the address to start program execution. If a bus error occurs 
while reading the vector table (or at any time before the first 
instruction is executed), the processor reacts as'if a double 
bus fault has occurred and it halts. Only an external reset 
will start a halted processor. 

RESET OPERATION, The reset signal is a bidirectional 
signal that allows either the processor or an external signal 
to reset the system. Figure 24 is a timing diagram for reset 
operations. Both the halt and the reset lines must be applied 
to ensure total reset of the processor. 

When the reset and halt lines are driven by an external 
device, it is recognized as an entire system reset, including 
the processor. The processor responds by reading the reset 
vector table entry (vector number zero, address $()()()(X)()) 

and loads it into the supervisor stack pointer (SSP). Vector 
table entry number one at address $000004 is read next 
and loaded into the program counter. The processor 
initializes the status register to an interrupt level of seven. 
No other registers are affected by the reset sequence. 

When a RESET sequence is executed, the processor drives 
the reset pin for 124 clock periods. In this case, the 
processor is trying to reset the rest of the system. Therefore, 
there is no effect on the i nterna I state of the processor. All of 
the processor's internal registers and the status register are 
unaffected by the execution of a RESET instruction. All 
external devices connected to the reset line will be reset at 

• 



DTACK, BERR, HALT ASSERTION RESULTS 
Table 17 

Asserted on Rising 
Case Control Edge of State 
No. Signal N N+2 

DTACK A 5 
1 BERR NA X 

HALT NA X 

DTACK A 5 
2 BERR NA X 

HALT A 5 

DTACK NA A 
3 BERR NA NA 

HALT A 5 

DTACK X X 
4 BERR A 5 

HALT NA NA 

DTACK X X 
5 BERR A 5 

HALT A 5 

DTACK NA X 
6 BERR NA A 

HALT A 5 

Legend: 

Result 

Normal cycle terminate and continue. 

Normal cycle terminate and halt. Continue when HALT 
removed. 

Normal cycle terminate and halt. Continue when HALT 
removed. 

Terminate and take bus error trap. 

Terminate and re-run. 

Terminate and re-run when HALT removed. 

N - the number of the current even bus state (e.g., 54, 56, etc.) 
A - signal is asserted in this bus state 
NA - signal is not asserted in this state 
X -don't care 
5 - signal was asserted in previous state and remains asserted in this state 

BERR AND HALT NEGATION RESULTS 
Table 18 

Conditions of 
Termination in Control 

Table 17 Signal 

Bus Error BERR 
HALT 

Re-run BERR 
HALT 

Re-run BERR 
HALT 

Normal BERR 
HALT 

Normal BERR 
HALT 

Legend: 
• = signal is negated in this bus state 

Negated on Rising 
Edge of State Results - Next Cycle 

N N+2 

• or • Takes bus error trap. 
• or • 

• or • Illegal sequence, usually traps to vector 
• number O. 

• Re-runs the bus cycle. 

• 

• May lengthen next cycle. 
• or • 

• If next cycle is started it will be terminated 
• or none as a bus error. 

VI-24 



the completion of the RESET instruction. 

Asserting the reset and halt pins for 10 clock cycles will 
cause a processor reset, except when Vee is initially applied 
to the processor. In this case, an external reset must be 
applied to the reset pin for at least 100 milliseconds. 

THE RELATIONSHIP OF DTACK, BERR, AND HALT 

In order to control termination of a bus cycle for a re-run or a 
bus error condition properly, DTACK, BERR, and HALT 
should be asserted and negated on the rising edge of the 
MK68000 clock. This will assure that when two signals are 
asserted simultaneously, the required setup time (#47) for 
both of them will be met during the same bus state. 

This, or some equivalent precaution, should be designed 
external to the MK68000. Parameter #48 is intended to 
ensure this operation in a totally asynchronous system, and 
may be ignored if the above conditions are met. 

The preferred bus cycle terminations may be summarized 
as follows (case numbers refer to Table 17): 

Normal Termination: DTACK occurs first (case 1). 
Halt Termination: HALT is asserted at same time, or 
precedes DTACK (no BERR) cases 2 and 3. 
Bus Error Termination: BERR is asserted in lieu of, at 
same time, or preceding DTACK (case 4); BERR negated 
at same time, or after DTACK. 
Re-Run Termination: HALT and BERR asserted at the 
same time, or before DTACK(cases 5 and 6); HALT must 
be negated at least 1 cycle after BERR. 

Table 17 details the resulting bus cycle termination under 
various combinations of control signal sequences. The 
negation of these same control signals under several 
conditions is shown in Table 18 (DTACK is assumed to be 
negated normally in all cases; for best results, both DTACK 
and BERR should be negated when address strobe is 
negated.) 

Example A: A system uses a watch-dog timer to terminate 
accesses to un-populated address space. The timer asserts 
DTACK and BERR simultaneously after time-out. (case 4) 

Example B: A system uses error detection on RAM 
contents. Designer may (a) delay DTACK until data verified, 
and return BERR and HALT simultaneously to re-run error 
cycle (case 5), or if valid, return DTACK; (b) delay i5fACK 
until data verified, and return BERR at same time as DTACK 
if data in error (case 4); (c) return DTACK prior to data 
verification, as described in previous section. If data invalid, 
BERR is asserted (case 1) in next cycle. Error-handling 
software must know how to recover error cycle. 

PROCESSING STATES 

The MK68000 is always in one of three processing states: 
normal, exception, or halted. The normal processing state is 
that associated with instruction execution; the memory 
references are to fetch instructions and operands, and to 

store results. A special case of the normal state is the 
stopped state which the processor enters when a STOP 
instruction is executed. In this state, no further memory 
references are made. 

The exception processing state is associated with 
interrupts, trap instructions, tracing and other exceptional 
conditions. The exception may be internally generated by an 
instruction or by an unusual condition arising during the 
execution of an instruction. Externally, exception pro
cessing can be forced by an interrupt, by a bus error, or by a 
reset. Exception processing is designed to provide an 
efficient context switch so that the processor may handle 
unusual conditions. 

The halted processing state is an indication of catastrophic 
hardware failure. For example, if during the exception 
processing of a bus error another bus error occurs, the 
processor assumes that the system is unusable and halts. 
Only an external reset can restart a halted processor. Note 
that a processor in the stopped state is not in the halted 
state, nor vice versa. 

PRIVILEGE STATES 

The processor operates in one of two states of privi lege: the 
"user" state or the "supervisor" state. The privilege state 
determines which operations are legal, is used by the 
external memory management device to control and 
translate accesses, and is used to choose between the 
supervisor stack pointer and the user stack pointer in 
instruction references. 

The privilege state is a mechanism for providing security in a 
computer system. Programs should access only their own 
code and data areas, and ought to be restricted from 
accessing information which theydo not need and must not 
modify. 

The privilege mechanism provides security by allowing 
most programs to execute in user state. In this state, the 
accesses are controlled, and the effects on other parts of the 
system are limited. The operating system executes in the 
supervisor state, has access to all resources, and performs 
the overhead tasks for the user state programs. 

SUPERVISOR STATE. The supervisor state is the higher 
state of privilege. For instruction execution, the supervisor 
state is determined by the S-bit of the status register; if the 
S-bit is asserted (high), the processor is in the supervisor 
state. All instructions can be executed in the supervisor 
state. The bus cycles generated by instructions executed in 
the supervisor state are classified as supervisor references. 
While the processor is in the supervisor privilege state, 
those instructions which use either the system stack 
pointer implicity or address register seven explicitly access 
the supervisor stack ~.ointer. 

All exception proceSSing is done in the supervisor state, 
regardless of the setting of the S-bit. The bus cycles 
generated during exception processing are classified as 
supervisor references. All stacking operations during 
exception processing use the supervisor stack pointer. 

VI-25 

II 



USER STATE. The user state isthe lower state of privilege. REFERENCE CLASSIFICATION 
For instruction execution, the user state is determined by Table 19 
the S-bit of the status register; if the S-bit is negated (low), 
the processor is executing instructions in the user state. 

Most instructions execute the same in user state as in the 
supervisor state. However, some instructions which have 
important system effects are made privileged. User 
programs are not permitted to execute the STOP 
instruction, or th'e RESET instruction. To ensure that a user 
program cannot enter the supervisor state except in a 
controlled manner, the instructions which modify the whole 
status register are privileged. To aid in debugging programs 
which are to be used as operating systems, the move to user 
stack pointer (MOVE USP) and move from user stack pointer 
(MOVE from USP) instructions are also privileged. 

The bus cycles generated by an instruction executed in user 
state are classified as user state references. This allows an 
external memory management device to translate the 
address and to control access to protected portions of the 
address space. While the processor is in the user privilege 
state, those instructions which use either the system stack 
pointer implicity, or address register seven explicitly, access 
the user stack pointer. 

PRIVILEGE STATE CHANGES. Once the processor is in 
the user state and executing instructions, only exception 
processing can change the privilege state. During exception 
processing, the current setting of the S-bit of the status 
register is saved and the S-bit is asserted, putting the 
processing in the supervisor state. Therefore, when 
instruction execution resumes at the address specified to 
process the exception, the processor is in the supervisor 
privilege state. 

REFERENCE CLASSIFICATION. When the processor 
makes a reference, it classifies the kind of reference being 
made, using the encoding on the three function code output 
lines. This allows external translation of addresses, control 
of access, and differentiation of special processor states, 
such as interrupt acknowledge. Table 19 lists the 
classification of references. 

EXCEPTION PROCESSING 

Before discussing the details of interrupts, traps, and 
tracing, a general description of exception processing is in 
order. The processing of an exception occurs in four steps, 
with variations for different exception causes. During the 
first step, a temporary copy of the status register is made, 

EXCEPTION VECTOR FORMAT 
Figure 25 

Function Code Output 
FC2 FC1 FCO Reference Class 

0 0 0 (Unassigned) 

0 0 1 User Data 

0 1 0 User Program 

0 1 1 (Unassigned) 

1 0 0 (Unassigned) 

1 0 1 Supervisor Data 

1 1 0 Supervisor Program 

1 1 1 Interrupt Acknowledge 

and the status register is set for exception processing. In the 
second step the exception vector is determined, and the 
third step is the saving of the current processor context. In 
the fourth step a new context is obtained, and the processor 
switches to instruction processing. 

EXCEPTION VECTORS. Exception vectors are memory 
locations from wh ich the processor fetches the address of a 
routine which will handle that exception. All exception 
vectors are two words in length (Figure 25), except for the 
reset vector, which is four words. All exception vectors lie in 
the supervisor data space, except for the reset vector which 
is in the supervisor program space. A vector number is an 
eight-bit number which, when multiplied by four, gives the 
address of an exception vector. Vector numbers are 
generated internally or externally, depending on the cause 
of the exception. In the case of interrupts, during the 
interrupt acknowledge bus cycle, a peripheral provides an 
a-bit vector number (Figure 26) to the processor on data bus 
lines DO through 07. The processor translates the vector 
number into a full 24-bit address, as shown in Figure 27. 
The memory layout for exception vectors is given in Table 
20. 

As shown in Table 20, the memory layout is 512 words long 
(1024 bytes). It starts at address 0 and proceeds through 
address 1023. This provides 255 unique vectors; some of 
these are reserved for TRAPS and other system functions. 
Of the 255, these are 192 reserved for user interrupt 
vectors. However, there is no protection on the first 64 
entries, so user interrupt vectors may overlap at the 
discretion of the systems designer. 

WORDO NEW PROGRAM COUNTER (HIGH) AO = 0, A1 = 0 

WORD 1 NEW PROGRAM COUNTER (LOW) AO = 0, A1 = 1 

VI-26 



EXCEPTION VECTOR ASSIGNMENT 
Table 20 

Vector Address 
Number(s) Dec Hex 

0 0 000 

- 4 004 

2 8 008 

3 12 OOC 

4 16 010 

5 20 014 

6 24 018 

7 28 01C 

8 32 020 

9 36 024 

10 40 028 

11 44 02C 

12* 48 030 

13* 52 034 

14* 56 038 

15 60 03C 

16-23* 64 040 

92 05C 

24 96 060 

25 100 064 

26 104 068 

27 108 06C 

28 112 070 

29 116 074 

30 120 078 

31 124 07C 

32-47 128 080 

188 OBC 

48-63* 192 OCO 

252 OFC 

64-255 256 100 

1020 3FC 

Space Assignment 

SP Reset Initial SSP 

SP Reset Initial PC 

SO Bus Error 

SO Address Error 

SO Illegal Instruction 

SO Zero Divide 

SO CHK Instruction 

SO TRAPV Instruction 

SO Privilege Violation 

SO Trace 

SO Line 1010 Emulator 

SO Line 1111 Emulator 

SO (Unassigned, reserved) 

SO (Unassigned, reserved) 

SO (Unassigned, reserved) 

SO Uninitialized Interrupt Vector 

SO (Unassigned, reserved) 

-

SO Spurious Interrupt 

SO Level 1 Interrupt Autovector 

SO Level 2 Interrupt Autovector 

SO Level 3 Interrupt Autovector 

SO Level 4 Interrupt Autovector 

SO Level 5 Interrupt Autovector 

SO Level 6 Interrupt Autovector 

SO Level 7 Interrupt Autovector 

SO TRAP Instruction Vectors 

-

SO (Unassigned, reserved) 

-

SO User Interrupt Vectors 

-

*Vector numbers 12, 13, 14, 16 through 23 and 48 through 63 are reserved for future enhancements by Mostek. No user 
peripheral devices should be assigned these numbers. 

VI·27 

II 



PERIPHERAL VECTOR NUMBER FORMAT 
Figure 26 

015 08 07 DO 

IGNORED 

Where: 

v7 is the Ms8 of the Vector Number 
vO is the LsB of the Vector Number 

ADDRESS TRANSLATED FROM 8-BIT VECTOR NUMBER 
Figure 27 

A23 

ALL ZEROES 

KINDS OF EXCEPTIONS, Exceptions can be generated by 
either internal or external causes. The externally generated 
exceptions are the interrupts and the bus error and reset 
requests. The interrupts are requests from peripheral 
devices for processor action while the bus error and reset 
inputs are used for access control and processor restart. The 
internally generated exceptions come from instructions, or 
from address errors or tracing. The trap (TRAP), trap on 
overflow (TRAPV), check register against bounds (CHK) and 
divide (DIV) instructions all can generate exceptions as part 
of their instruction execution. In addition, illegal instruc
tions, word fetches from odd addresses and privilege 
violations cause exceptions. Tracing behaves like a very 
high priority, internally generated interrupt after each 
instruction execution. 

EXCEPTION PROCESSING SEQUENCE. Exception 
processing occurs in four identifiable steps. In the first step, 
an internal copy is made of the status register. After the 
copy is made, the S-bit is asserted, putting the processor 
into the supervisor privilege state. Also, the T-bit is negated 
which will allow the exception handler to execute 
unhindered by tracing. For the reset and interrupt 
exceptions, the interrupt priority mask is also updated. 

In the second step, the vector number of the exception is 
determined. For interrupts, the vector number is obtained by 
a processor fetch, classified as an interrupt acknowledge. 
For all other exceptions, internal logic provides the vector 
number. This vector number is then used to generate the 
address of the exception vector. 

The third step is to save the current processor status, except 
for the reset exception. The current program counter value 
and the saved copy of the status register are stacked using 
the supervisor stack pointer. The program counter value 
stacked usually points to the next unexecuted instruction, 
however for bus error and address error, the value stacked 
for the program counter is unpredictable, and may be 
incremented from the address of the instruction which 
caused the error. Additional information defining the 
current context is stacked for the bus error and address 
error exceptions. 

A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 AO 

The last step is the same for all exceptions. The new 
program counter value is fetched from the exception vector. 
The processor then resumes instruction execution. The 
instruction at the address given in the exception vector is 
fetched, and normal instruction decoding and execution is 
started. 

MULTIPLE EXCEPTIONS, These paragraphs describe the 
processing which occurs when multiple exceptions arise 
simultaneously. Exceptions can be grouped according to 
their occurrence and priority. The Group ° exceptions are 
reset, bus error, and address error. These exceptions cause 
the instruction currently being executed to be aborted, and 
the exception processing to commence at the next minor 
cycle of the processor. The Group 1 exceptions are trace and 
interrupt, as well as the privilege violations and illegal 
instructions. These exceptions a Ilow the current instruction 
to execute to completion, but preempt the execution of the 
next instruction by forcing exception processing to occur 
(privilege violations and illegal instructions are detected 
when they are the next instruction to be executed). The 
Group 2 exceptions occur as part of the normal processing 
of instructions. The TRAP, TRAPV, CHK, and zero divide 
exceptions are in this group. For these exceptions, the 
normal execution of an instruction may lead to exception 
processing. 

Group ° exceptions have highest priority, while Group 2 
exceptions have lowest priority. Within Group 0, reset has 
highest priority, followed by bus error and then address 
error. Within Group 1, trace has priority over external 
interrupts, which in turn takes priority over illegal 
instruction and privilege violation. Since only one 
instruction can be executed at a time, there is no priority 
relation within Group 2. 

The priority relation between two exceptions determines 
which is taken, or taken first, if the conditions for both arise 
simultaneously. Therefore, if a bus error occurs during a 
TRAP instruction, the bus error takes precedence, and the 
TRAP instruction processing is aborted. In another example, 
if an interrupt request occurs during the execution of an 
instruction while the T -bit is asserted, the trace exception 
has priority, and is processed first. Before instruction 

VI-28 



EXCEPTION GROUPING AND PRIORITY 
Table 21 

Group Exception Processing 

Reset 
0 Bus Error Exception processing begins 

Address Error within two clock cycles 

Trace 
1 Interrupt Exception processing begins 

Illegal before the next instruction 
Privilege 

TRAP, TRAPV, 
2 CHK, Exception processing is started 

Zero Divide by normal instruction execution 

processing resumes, however, the interrupt exception is 
also processed, and instruction processing commences 
finally in the interrupt handler routine. A summary of 
exception grouping and priority is given in Table 21 . 

EXCEPTION PROCESSING DETAILED DISCUSSION 

Exceptions have a number of sources, and each exception 
has processing which is peculiar to it. The following 
paragraphs detail the sources of exceptions, how each 
arises, and how each is processed. 

RESET. The reset input provides the highest exception 
level. The processing of the reset signal is designed for 
system initiation, and recovery from catastrophic failure. 
Any processing in progress at the time of the reset is 
aborted and cannot be recovered. The processor is forced 
into the supervisor state, and the trace state is forced off. 
The processor interrupt priority mask is set at level seven. 
The vector number is internally generated to reference the 
reset exception vector at location 0 in the supervisor 
program space. Because no assumptions can be made 
about the validity of register contents, in particular the 
supervisor stack pointer, neither the program counter nor 
the status register is saved. The address contained in the 
fi rst two words of the reset exception vector is fetched as the 
initial supervisor stack pointer, and the address in the last 
two words of the reset exception vector is fetched as the 
initial program counter. Finally, instruction execution is 
started at the address in the program counter. The power
up/restart code should be pointed to by the initial program 
counter. 

The RESET instruction does not cause loading of the reset 
vector, but does assert the reset line to reset external 
devices. This allows the software to reset the system to a 
known state and then continue processing with the next 
instruction. 

INTERRUPTS. Seven levels of interrupt priorities are 
provided. Devices may be chained externally within 
interrupt priority levels, allowing an unlimited number of 
peripheral devices to interrupt the processor. Interrupt 

priority levels are numbered from one to seven, level seven 
being the highest priorty. The status register contains a 
three-bit mask which indicates the current processor 
priority, and interrupts are inhibited for all priority leVels less 
than or equal to the current processor priority. 

An interrupt request is made to the processor by encoding 
the interrupt request level on the interrupt request lines; a 
zero indicates no interrupt request. Interrupt requests 
arriving at the processor do not force immediate exception 
processing, but are made pending. Pending interrupts are 
detected between instruction executions. If the priority of 
the pending interrupt is lower than or equal to the current 
processor priority, execution continues with the next 
instruction and the interrupt exception processing is 
postponed. (The recognition of level seven is slightly 
different, as explained in a following paragraph.) 

If the priority of the pending interrupt is greater than the 
current processor priority, the exception processing 
sequence is started. First a copy of the status register is II 
saved, and the privilege state is set to supervisor, tracing is 
suppressed, and the processor priority level is set to the 
level of the interrupt being acknowledged. The processor 
fetches the vector number from the interrupting device, 
classifying the reference as an interrupt acknowledge and 
displaying the level number of the interrupt being 
acknowledged on the address bus. If external logic requests 
an automatic vectoring, the processor internally generates 
a vector number which is determined by the interrupt level 
number. If external logic indicates a bus error, the interrupt 
is taken to be spurious, and the generated vector number 
references the spurious interrupt vector. The processor 
then proceeds with the usual exception processing, saving 
the program counter and status register on the supervisor 
stack. The saved value ofthe program counter is the address 
of the instruction which would have been executed had the 
interrupt not been present. The content of the interrupt 
vector whose vector number was previously obtained is 
fetched and loaded into the program counter, and normal 
instruction execution commences in the interrupt handling 
routine. A flow chart for the interrupt acknowledge 
sequence is given in Figure 28; a timing diagram is given in 
Figure 29, and the interrupt processing sequence is shown 
in Figure 30. 

Priority level seven is a special case. Level seven interrupts 
cannot be inhibited by the interrupt priority mask, thus 
providing a "non-maskable interrupt" capability. An 
interrupt is generated each time the interrupt request level 
changes from some lower level to level seven. Note that a 
level seven interrupt may still be caused by the level 
comparison if the request level is a seven and the processor 
priority is set to a lower level by an instruction. 

UNINITIALIZED INTERRUPT. An interrupting device 
asserts VPA or provides an interrupt vector during an 
interrupt acknowledge cycle to the MK68000. If the vector 
register has not been initialized, the responding MK68000 
Family peripheral will provide vector 15, the uninitialized 

VI-29 



INTERRUPT ACKNOWLEDGE SEQUENCE 
FLOWCHART 
Figure 28 

PROCESSOR INTERRUPTING DEVICE 

Request Interrupt 

I 

Grant Interrupt 

1 ) Compare interrupt level in status register 
and wait for current instruction to complete 

2) Assert address strobe (AS) 
3) Place interrupt level on A1. A2. A3 
4) Set function code to interrupt acknowledge 
5) Assert address strobe (AS) 
6) Assert data strobes (UDS' and IDS) 

I 

Provide Vector Number 

1) Place vector number on DO-D7 
2) Assert data transfer acknowledge (DTACK) 

I 

Acquire Vector Number 

1) latch vector number 
2) Negate UDS and lDS 
3) Negate AS , 

Release 

1) Negate DTACK 
r-______ I 

• Start Interrupt Processing 

• Although a vector number is one byte. both data strobes are asserted 
due to the microcode used for exception processing. The processor 
does not recognize anything on data lines D8 through D15 atthis time. 

interrupt vector. This provides a uniform way to recover 
from a programming error. 

SPURIOUS INTERRUPT. If during the interrupt acknow
ledge cycle no device responds by asserti ng DT ACK or VPA, 
the bus error line should be asserted to terminate the vector 
acquisition. The processor separates.the processing of this 
error from bus error by fetching the spurious interrupt 
vector instead of the bus error vector. The processor then 
proceeds with the usual exception processing. 

INSTRUCTION TRAPS. Traps are exceptions caused by 
instructions. They arise eitherfrom processor recognition of 
abnormal conditions during instruction execution, or from 
use of instructions whose normal behavior is trapping. 

Some instructions are used specifically to generate traps. 
The TRAP instruction always forces an exception, and is 
useful for implementing system calls for user programs. 
The TRAPV and CHK instructions force an exception if the 
user program detects a runtime error, which may be an 
arithmetic overflow or a subscript out of bounds. 

The signed divide (DIVS) and unsigned divide (DIVU) 
instructions will force an exception if a division operation is 
attempted with a divisor of zero. 

ILLEGAL AND UNIMPLEMENTED INSTRUCTIONS. 
Illegal instruction is the term used to refer to any ofthe word 
bit patterns which are not the bit pattern of the first word of a 
legal instruction. During instruction execution, if such an 
instruction is fetched, an illegal instruction exception 
occurs. 

Word patterns with bits 15 through 12 equaling 1010 or 
1111 are distinguished as unimplemented instructions and 

INTERRUPT ACKNOWLEDGE SEQUENCE TIMING DIAGRAM 
Figure 29 

ClK 

A1-A3 ==>-< 
AS~ \ '---_-JI 
UDS*~. '---_-J( 
lDS~ \'------~ '---_-J( 

R/Vii \ 
DTACK \ \ / \ 
08-015 < < 
00-07 ( < ) < 
FCO-2 =x \ 
IPlO-2 \ ~----------------------J7 

LAST BUS CYCLE OF INSTRUCTION STACK lACK CYCLE STACK AND 

I .. 
(READ OR WRITE) I PCl 1 (VECTOR NUMBER ACQUISITION) 1 VECTOR FETCH I 

~·"----------~.~. __ (SSP)~.~."~--------------•• ~ .... ~----~ •. 

* Although a vector number is one byte, both data strobes are asserted due to the microcode used for exception processing. The processor 
does not recognize anything on data lines 08 through 015 at this time. 

VI-30 



INTERRUPT PROCESSING SEQUENCE 
Figure 30 

LAST BUS CYCLE 
OF INSTRUCTION STACK 

lACK STACK STACK 
CYCLE 

DURING WHICH ---. PCL ~ ---.. STATUS r---+- PCH -... 
(VECTOR NUMBER 

INTERRUPT WAS (AT SSP- 2) (AT SSP- 6) (AT SSP-4) 
RECOGNIZED 

ACQUISITION) 

, 

READ READ FETCH FIRST TWO 

~ VECTOR VECTOR INSTRUCTION WORDS 
HIGH LOW OF INTERRUPT 

(A16-A31) (AO-A15) ROUTINE 

NOTE: 
SSP refers to the value of the supervisor stack pointer before the interrupt occurs. 

separate exception vectors are given to these patterns to 
permit efficient emulation. This facility allows the operating 
system to detect program errors, or to emulate unimple
mented instructions in software. 

PRIVILEGE VIOLATIONS. In order to provide system 
security, various instructions are privileged. An attempt to 
execute one of the privileged instructions while in the user 
state will cause an exception. The privileged instructions 
are: 

STOP 
RESET 
RTE 
MOVE to SR 

AND (word) Immediate to SR 
EOR (word) Immediate to SR 
OR (word) Immediate to SR 
MOVE USP 

TRACING. To aid in program development, the MK68000 
i ncl udes a faci I ity to allow instruction by instruction traci ng. 
In the trace state, after each instruction is executed an 
exception is forced, allowing a debugging program to 
monitor the execution of the program under test. 

The trace facility uses the T -bit in the supervisor portion of 
the status register. If the T-bit is negated (off), tracing is 
disabled, and instruction execution proceeds from instruc
tion to instruction as normal. If the T-bit is asserted (on) at 
the beginning of the execution of an instruction, a trace 
exception will be generated after the execution of that 
instruction is completed. If the instruction is not executed, 
either because an interrupt is taken, or the instruction is 
illegal or privileged, the trace exception does not occur. The 
trace exception also does not occur if the instruction is 
aborted by a reset, bus error, or address error exception. If 
the instruction is indeed executed and an interrupt is 
pending on completion, the trace exception is processed 
before the interrupt exception. If, during the execution of the 
instruction, an exception is forced by that instruction, the 
forced exception is processed before the trace exception. 

As an extreme illustration of the above rules, consider the II 
arrival of an interrupt during the execution of a TRAP 
instruction while tracing is enabled. First the trap exception 
is processed, then the trace exception, and finally the 
interrupt exception. Instruction execution resumes in the 
interrupt handler routine. 

BUS ERROR. Bus error exceptions occur when the 
external logic requests that a bus error be processed by an 
exception. The current bus cycle which the processor is 
making is then aborted. Whether the processor was doing 
instruction or exception processing, that processing is 
terminated, and the processor immediately begins 
exception processing. 

Exception processing for bus error follows the usual 
sequence of steps. The status register is copied, the 
supervisor state is entered, and the trace state is turned off. 
The vector number is generated to refer to the bus error 
vector. Since the processor was not between instructions 
when the bus error exception request was made, the 
context of the processor is more detailed. To save more of 
this context, additional information is saved on the 
supervisor stack. The program counter and the copy of the 
status register are of course saved. The value saved for the 
program counter is advanced by some amount, two to ten 
bytes beyond the address of the fi rst word of the instruction 
which made the reference causing the bus error. If the bus 
error occurred during the fetch of the next instruction, the 
saved program counter has a value in the vicinity of the 
current instruction, even if the current instruction isa 
branch, a jump, or a return instruction. Besides the usual 
information, the processor saves its internal copy of the first 
word of the instruction being processed and the address 
which was being accessed by the aborted bus cycle. 
Specific information about the access is also saved whether 
it was a read or a write, whether the processor was 
processing an instruction or not, and the classification 

VI-31 



displayed on the function code outputs when the bus error 
occurred. The processor is processing an instruction if it is in 
the normal state or processing a Group 2 exception; the 
processor is not processing an instruction if it is processing 
a Group 0 or a Group 1 exception. Figure 31 illustrates how 
this information is organized on the supervisor stack. 
Although this information is not sufficient in general to 
effect full recovery from the bus error, it does allow software 
diagnosis. Finally, the processor commences instruction 
processing at the address contained in the vector. It is the 
responsibility of the error handler routine to clean up the 
stack and determine where to continue execution. 

If a bus error occurs during the exception processing for a 
bus error, address error, or reset, the processor is halted, 
and all processing ceases. This simplifies the detection of 
catastrophic system failure, since the processor removes 

SUPERVISOR STACK ORDER 
Figure 31 

itself from the system rather than destroy all memory 
contents. Only the RESET pin can restart a halted processor. 

AD DR ESS ER ROR. Address error exceptions occur when 
the processor attempts to access a word or a long word 
operand or an instruction at an odd address. The effect is 
much like an internally generated bus error, so that the bus 
cycle is aborted, and the processor ceases whatever 
processing it is currently doing and begins exception 
processing. After exception processing commences, the 
sequence is the same as that for bus error including the 
information that is stacked, except that the vector number 
refers to the address error vector instead. Likewise, if an 
address error occurs during the exception processing for a 
bus error, address error, or reset, the processor is halted. As 
shown in Figure 32, an address error will execute a short 
bus cycle followed by exception processing. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
LOWER 
ADDRESS lR/wjl/N I FUNCTION 

CODE 

HIGH 

I- ACCESS ADDRESS - - - - - - - - - - - - - ----------
LOW 

INSTRUCTION REGISTER 

STATUS REGISTER 

HIGH 
r-PROGRAM COUNTER- --- ---- -------------

LOW 

R/W (read/Write): write = O. read = 1. I/N (instruction/not): instruction = O. not = 1 

ADDRESS ERROR TIMING 
Figure 32 

DO-D15 

50 S1 S2 53 S4 S5 S6 S7 SO 51 S2 S3 S4 S5 S6 S7 SO S1 S2 S3 S4 S5 

\ 
L-

\ ~----------~L-

\ 

r .. f--__ READ---.... ~I ..... f--ADDRE55 ERROR~APPROX. 8~WRITE STACK----.I 
WRITE ----rcLOCKS IDLE.~ ------J 

VI-32 



INTERFACE WITH 6800 PERIPHERALS 

To interface the synchronous 6800 peripherals with the 
asynchronous MK68000, the processor modifies its bus 
cycle to meet the 6800 cycle requirements whenever a 
6800 device address is detected. This is possible since both 
processors use memory mapped I/O. Figure 33 is a flow 
chart of the interface operation between the processor and 
6800 devices. 

DATA TRANSFER OPERATION 

Three signals on the processor provide the 6800 interface. 
They are: enable (E), valid memory address (VMA), and valid 
peripheral address (VPA). Enable corresponds to the E or 4>2 
signal in existing 6800 systems. It is the bus clock used by 
the frequency clock that is one tenth of the incoming 
MK68000 clock frequency. The timing of E allows 1 MHz 
peripherals to be used with an 8 MHz MK68000. Enable 
has a 60/40 duty cycle; that is, it is low for six input clocks 
and high for four input clocks. This duty cycle allows the 
processor to do successive VPA accesses on successive E 
pulses. 

6800 cycle timing is given in Figure 34. At state zero (SO) in 
the cycle, the address bus and function codes are in the 
high-impedance state. One half clock later, in state 1, the 
address bus and function code outputs are released from 
the high-impedance state. 

During state 2, the address strobe (AS) is asserted to 
indicate that there is a valid address on the address bus. If 
the bus cycle is a read cycle, the upper and/or lower data 
strobes a re a Iso asserted instate 2. If the bus cycle is a write 
cycle, the read/write (R/W) signal is switched to low (write) 
during state 2. One half clock later, in state 3, the write data 

6800 CYCLE OPERATION 
Figure 34 

6800 INTERFACING FLOW CHART 
Figure 33 

PROCESSOR 
Initiate Cycle 

SLAVE 

1 ) The processor starts a normal Read or 
Write cycle , 

Define 6800 cycle 

1) External hardware asserts Valid Peripheral 
Address (VPA) 

Synchronize With Enable 

1) The processor monitors Enable (E) until it is 
low (Phase 1 ) 

2) The processor asserts Valid Memory Ad
dress (VMA) 

Transfer Data 

1 ) The peripheral waits until E is active and 
then transfers the data 

I 

Terminate Cycle 

1) The processor waits until E goes low. (On a 
Read cycle the data is latched as E goes 
low internally) 

2) The processor negates VMA 
3) The processor negates AS. UOS. and lOS 

• Start Next Cycle 

SO S2 S4 S6 SO S2 S4 Sw SwSwSw SwSw SwSw Sw Sw S6 SO S2 S4 SwSwSwSwSw Sw 56 SO 

ClK 

A1-A23 

AS 

UOS 

lOS 

R/Vii 

OTACK ~ 

( 08-015 ~>---------------< 

( 00-07 ~......------------( 

FCO-2 X X 
E 

VPA 

VMA 

\ 
\ 

>----< >--
>----< l-
X >C 

I L 
/\ / 
/ \ r 

f--~.9!!~~l_~ ______ ~~Q~~.!..P!:!SR~~ _____ + ___ ~~OE~~.!.!'!:!.~~l ___ -1 
CYCLE READ CYCLE WRITE CYCLE 

(WORST CASE) (BEST CASE) 

VI-33 

II 



is placed on the data bus, and in state 4 the data strobes are 
issued to indicate valid data on the data bus. 

The processor now inserts wait states until it recognizes the 
assertion of VPA. The VPA input signals the processor that 
the address on the bus is the address of a 6800 device (or an 
area reserved for 6800 devices) and that the bus should 
conform to the <1>2 transfer characteristics of the 6800 bus. 
Valid peripheral address is derived by decoding the address 
bus, conditioned by address strobe. 

After the recognition of VPA, the processor assures that the 
Enable (E) is low, by waiting if necessary, and subsequently 
asserts VMA. Valid memory address is then used as part of 
the chip select equation ofthe peripheral. This ensures that 
the 6800 peripherals are selected and deselected at the 
correct time. The peripheral now runs its cycle during the 
high portion of the E signal. 

During a read cycle, the processor latches the peripheral 
data in state 6. For all cycles, the processor negates the 
address and data strobes one half clock cycle later in state 7 
and the Enable signal goes low at this time. Another half 
clock later, the address bus is put in the high-impedance 
state. During a write cycle, the data bus is put in the high
impedance state and the read/write signal is switched high 
at this time. The peripheral logic must remove VPA within 
one clock after address strobe is negated. DTACK should 
not be asserted while VPA is asserted. 

Notice that the MK68000 VMA is active low, contrasted 
with the active high 6800VMA. This allows the processor to 
put its buses in the high-impedance state on DMA requests 
without inadvertently selecting peripherals. 

INTERRUPT INTERFACE OPERATION 

During an interrupt acknowledge cycle while the processor 
is fetching the vector, if VPA is asserted, the MK68000 will 
assert VMA and complete a normal 6800 read cycle as 
shown in Figure 35. The processor will then use an 
internally generated vector that is a function of the interrupt 
being serviced. This process is known as a utovectoring. The 
seven autovectors are vector numbers 25 through 31 
(decimal). 

This operates in the same fashion (but is not restricted to) 
the 6800 interrupt sequence. The basic difference is that 
there are six normal interrupt vectors and one NMI type 
vector. As with both the 6800 and the MK68000's normal 
vectored interrupt, the interrupt service routine can be 
located anywhere in the address space. This is due to the 
fact that while the vector numbers are fixed, the contents of 

the vector table entries are assigned by the user. 

Since VMA is asserted during a utovectoring, the 6800 

peripheral address decoding should prevent unintended 
accesses. 

INSTRUCTION SET 

The following paragraphs provide information about the 
addressing categories and instruction set of the MK68000. 

ADDRESSING CATEGORIES 

Effective address modes may be categorized by the ways in 
which they may be used. The following classifications will 
be used in the instruction definitions. 

Data If an effective address mode may be used to 
refer to data operands, it is considered a data 
addressing effective address mode. 

Memory If an effective address mode may be used to 
refer to memory operands, it is considered a 
memory addressing effective address mode. 

Alterable If an effective address mode may be used to 
refer to alterable (writeable) operands, it is 
considered an alterable addressing effective 
address mode. 

Control If an effective address mode may be used to 
refer to memory operands without an assoc
iated size, it is considered a control addressing 
effective address mode. 

Table 22 shows the various categories to which each of the 
effective address modes belong. Table 23 is the instruction 
set summary. 

The status register addressing mode is not permitted unless 
it is explicitly mentioned as a legal addressing mode. 

These categories may be combined, so that additional, more 
restrictive, classifications may be defined. For example, the 
instruction descriptions use such classifications as 
alterable memory or data alterable. The former refers to 
those addressing modes which are both alterable and 
memory addresses, and the latter refers to addressing 
modes which are both data and alterable. 

INSTRUCTION PRE-FETCH 

The MK68000 uses a 2-word tightly-coupled instruction 
prefetch mechanism to enhance performance. This 
mechanism is described in terms of the microcode 
operations involved. If the execution of an instruction is 
defined to begin when the microroutine for that instruction 
is entered, some features of the prefetch mechanism can be 
described. 

1) When execution of an instruction begins, the operation 
word and the word following have already been 

VI-34 



AUTOVECTOR OPERATION TIMING DIAGRAM 
Figure 35 50 52 54 56 50 52 54 5w 5w 5w 5w 5w 5w 5w 5w 5w 5w 56 50 52 

ClK 

A1-A3 

A4-A23 ~================~ ~ 
A5 

U05* ~ ________ . ________ ~r-\ 
l05 

R/VV 

OTACK ~ 
08-015 --c=J~----------------------
00-07 ~---------------
FCO-2 X 7 c 
IPlO-2 ~~-------------------------------------
E L-
VPA 

VMA 
------_\=======~------~/~ \'--__________ 1 
I--~~~~-+- - - - -- - AUTOVECTOR OPERATION - - - - --i 

* Although a vector number is one byte, both data strobes are asserted due to the microcode used for exception processing. The processor does not 
recognize anything on data lines 08 through 015 at this time. 

EFFECTIVE ADDRESSING MODE CATEGORIES 
Table 22 

Effective 
Address 
Modes 

On 
An 

(An) 

(An)+ 
-(An) 
d(An) 

d(An,ix) 
xxx.w 
xxx.L 

d(PC) 
d(PC,ix) 

#xxx 

INSTRUCTION SET 
Table 23 

Mnemonic Description 

Mode Register 

000 register number 
001 register number 
010 register number 

011 register number 
100 register number 
101 register number 

110 register number 
111 000 
111 001 

111 010 
111 011 
111 100 

Operation 

Addressing Categories 
Data Memory Control Alterable 

X - - X 
- - - X 
X X X X 

X X - X 
X X - X 
X X X X 

X X X X 
X X X X 
X X X X 

X X X -

X X X -

X X - -

Condition 
Codes 

XN ZVC 

ABCD Add Decimal with Extend (Destination), o+(Source), 0 - Destination * U * U * 

ADD Add Binary (Destination)+(Source) - Destination * * * * * 

* affected a cleared U undefined - unaffected 1 set [ ] = bit number d = displacement 

VI-3S 

II 



INSTRUCTION SET (CONTINUED) 
Table 23 

Mnemonic Description 

ADDA Add Address 

ADDI Add Immediate 

ADDQ Add Quick 

ADDX Add Extended 

AND AND Logical 

ANDI AND Immediate 

ANDI to CCR AND Immediate to Condition Codes 

ANDI to SR AND Immediate to Status Register 

ASL,ASR Arithmetic Shift 

Bee Branch Conditionally 

BCHG Test a Bit and Change 

BCLR Test a Bit and Clear 

BRA Branch Always 

BSET Test a Bit and Set 

BSR Branch to Subroutine 

BTST Test a Bit 

CHK Check Register against Bounds 

CLR Clear an Operand 

CMP Compare 

CMPA Compare Address 

CMPI Compare Immediate 

CMPM Compare Memory 

DBee Test Condition, Decrement and Branch 

DIVS Signed Divide 

DIVU Unsigned Divide 

EOR Exclusive OR Logical 

Condition 
Operation Codes 

XN Z VC 

(Destination)+(Source) - Destination - - - - -

(Destination)+lmmediate Data - Destination * * * * * 

(Destination)+lmmediate Data - Destination * * * * * 

(Destination)+(Source)+ X - Destination * * * * * 

(Destination) A (Source) - Destination - * * 0 0 

(Destination) A Immediate Data - Destination - * * 0 0 

(Source) A CCR - CCR * * * * * 

(Source) A SR - SR * * * * * 

(Destination) Shifted by <count> - Destination * * * * * 

If ee then PC+d - PC - - - - -

~ «bit number» OF Destination - Z 
~ «bit number» OF Destination - - - * - -
<bit number> OF Destination 

~ «bit number» OF Destination - Z 
0- <bit number> - OF Destination - - * - -

PC + d - PC - - - - -

~ «bit number» OF Destination - Z 
1 - <bit number> OF Destination - - * - -

PC - -(SP), PC+d - PC - - - - -

~ «bit number» OF Destination - Z - - * - -

If Dn <0 or Dn> «ea» then TRAP - * U U U 

o - Destination - 0 1 o 0 

(Destination) - (Source) - * * * * 

(Destination) - (Source) - * * * * 

(Destination) - Immediate Data - * * * * 

(Destination) - (Source) - * * * * 

If ~ ee then Dn - 1 - Dn; if Dn =I: - 1 then - - - - -
PC + d - PC 

(Destination)/(Source) - Destination - * * * 0 

(Destination)/(Source) - Destination - * * * 0 

(Destination) $ (Source) - Destination - * * 0 0 

* affected o cleared U undefined - unaffected 1 set [ ] = bit number d = displacement 

VI-36 



INSTRUCTION SET (CONTINUED) 
Table 23 

Mnemonic Description 

EORI Exclusive OR Immediate 

EORI to CCR Exclusive OR Immediate to Condition 
Codes 

EORI to SR Exclusive OR Immediate to Status 
Register 

EXG Exchange Register 

EXT Sign Extend 

JMP Jump 

JSR Jump to Subroutine 

LEA Load Effective Address 

LINK Link and Allocate 

LSL, LSR Logical Shift 

MOVE Move Data from Source to Destination 

MOVE to CCR Move to Condition Code 

MOVE to SR Move to the Status Register 

MOVE from Move from the Status Register 
SR 

MOVE USP Move User Stack Pointer 

MOVEA Move Address 

MOVEM Move Multiple Registers 

MOVEP Move Peripheral Data 

MOVEQ Move Quick 

MULS Signed Multiply 

MULU Unsigned Multiply 

NBCD Negate Decimal with Extend 

NEG Negate 

NEGX Negate with Extend 

NOP No Operation 

NOT Logical Complement 

OR Inclusive OR Logical 

Condition 
Operation Codes 

XN ZVC 

(Destination) e Immediate Data -- Destination - * * o 0 

(Source) e CCR -- CCR * * * * * 

(Source) e SR -- SR * * * * * 

Rx-Ry - - - - -

(Destination) Sign-extended -- Destination - * * o 0 

Destination -- PC - - - - -

PC -- -(SP); Destination -- PC - - - - -

Destination -- An - - - - -

An -- -(SP); SP -- An; SP + d -- SP - - - - -

(Destination) Shifted by <count> -- Destination * * * 0 * 

(Source) -- Destination - * * o 0 

(Source) -- CCR * * * * * 

(Source) -- SR * * * * * 

SR -- Destination - - - - -

USP -- An, An -- USP - - - - -

(Source) -- Destination - - - - -

Registers -- Destination 
(Source) -- Registers - - - - -

(Source) -- Destination - - - - -

Immediate Data -- Destination - * * 0 0 

(Destination)* (Source) -- Destination - * * o 0 

(Destination)* (Source) -- Destination - * * o 0 

0- (Destinationl,o - X -- Destination * U * U * 

0- (Destination) -- Destination * * * * * 

0- (Destination) - X -- Destination * * * * * 

- - - - - -

~ (Destination) -- Destination - * * o 0 

(Destination) v (Source) -- Destination - * * o 0 

* affected o cleared U undefined - unaffected 1 set [ ] = bit number d = displacement 

VI-37 

II 



INSTRUCTION SET (CONTINUED) 
Table 23 

Mnemonic Description 

ORI Inclusive OR Immediate 

ORI to CCR Inclusive OR Immediate to Condition 
Codes 

ORI to SR Inclusive OR Immediate to Status 
Register 

PEA Push Effective Address 

RESET Reset External Devices 

ROL, ROR Rotate (Without Extend) 

ROXL, ROXR Rotate with Extend 

RTE Return from Exception 

RTR Return and Restore Condition Codes 

RTS Return from Subroutine 

SBCD Subtract Decimal with Extend 

Sec Set According to Condition 

STOP Load Status Register and Stop 

SUB Subtract Binary 

SUBA Subtract Address 

SUBI Subtract Immediate 

SUBQ Subtract Quick 

SUBX Subtract with Extend 

SWAP Swap Register Halves 

TAS Test and Set an Operand 

TRAP Trap 

TRAPV Trap on Overflow 

TST Test an Operand 

UNLK Unlink 

Operation 

(Destination) v Immediate Data - Destination 

(Source) V CCR - CCR 

(Source) V SR - SR 

Destination - -(SP) 

-

(Destination) Rotated by <count> - Destination 

(Destination) Rotated by <count> - Destination 

(SP)+ - SR, (SP)+ - PC 

(SP)+ - CC; (SP)+ - PC 

(SP)+ - PC 

(Destinationl,o - (Sourcel,o - X - Destination 

If ee then 1 's- Destination else O's- Destination 

Immediate Data - SR; STOP 

(Destination) - (Source) - Destination 

(Destination) - (Source) - Destination 

(Destination) - Immediate Data - Destination 

(Destination) - Immediate Data - Destination 

(Destination) - (Source) - X - Destination 

Register [31 :16] -- Register [15:0] 

(Destination) Tested - CC; 1 - [7] OF Destination 

PC - -(SSP); SR - -(SSP) -; (Vector) - PC 

If V then TRAP 

(Destination) Tested - CC 

An - SP; (SP)+ - An 

Condition 
Codes 

XN ZVC 

- * * 0 0 

* * * * * 

* * * * * 

- - - - -

- - - - -

- * * 0 * 

* * * 0 * 

* * * * * 

* * * * * 

- - - - -

* U * U * 

- - - - -

* * * * * 

* * * * * 

- - - - -

* * * * * 

* * * * * 

* * * * * 

- * * 0 0 

- * * 0 0 

- - - - -

- - - - -

- * * o 0 

- - - - -

* affected o cleared U undefined - unaffected 1 set [ ] = bit number d = displacement 

fetched. The operation word is in the instruction 
decoder. 

2) In the case of multi-word instructions, as each 
additional word of the instruction is used internally, a 
fetch is made to the instruction stream to replace it. 

3) The last fetch from the instruction stream is made 

VI-38 

when the operation word is discarded and decoding is 
started on the next instruction. 

4) If the instruction is a single-word instruction causing a 
branch, the second word is not used. But because this 
word is fetched by the preceding instruction, it is 
impossible to avoid this superfluous fetch. In the case of 



an interrupt or trace exception, both words are not 
used. 

5) The program counter usually points to the last word 
fetched from the instruction stream. 

INSTRUCTION EXECUTION TIMES 

The following paragraphs contain listings of the instruction 
execution times in terms of external clock (ClK) periods. In 
this timing data, it is assumed that the memory cycle time is 
4 clock periods. Any wait states ca used by a longer memory 

EFFECTIVE ADDRESS CALCULATION TIMING 
Table 24 

Addressing Mode 

Register 
On Data Register Direct 
An Address Register Direct 

Memory 
(An) Address Register Indirect 

cycle must be added to the total instruction time. The 
number of bus read and write cycles for each instruction is 
also included with the timing data. This data is enclosed in 
parenthesis following the execution periods and is shown 
as: (r/w) where r is the number of read cycles and w is the 
number of write cycles. 

NOTE 

The number of periods includes instruction fetch and all 
applicable operand fetches and stores. 

Byte, Word Long 

0(0/0) 0(0/0) 
0(0/0) 0(0/0) 

4(1/0) 8(2/0) 
(An)+ Address Register Indirect with Postincrement 4(1/0) 8(2/0) 

-(An) Address Register Indirect with Predecrement 
dIAn) Address Register Indirect with Displacement 

d(An,ix)* Address Register Indirect with Index 
xxx.w Absolute Short 

xxx.l Absolute long 
d(PC) Program Counter with Displacement 

d(PC,ix)* Program Counter with Index 
#xxx Immediate 

*The size of the index register (ix) does not affect execution time. 

MOVE BYTE AND WORD INSTRUCTION CLOCK PERIODS 
Table 25 

Destination 
Source Dn An (An) (An)+ -(An) 

On 4(1/0) 4(1/0) 8(1/1 ) 8(1/1) 8(1/1) 
An 4(1/0) 4(1/0) 8(1/1 ) 8(1/1 ) 8(1/1 ) 
(An) 8(2/0) 8(2/0) 12(2/1 ) 12(2/1 ) 12(2/1 ) 

(An)+ 8(2/0) 8(2/0) 12(2/1 ) 12(2/1 ) 12(2/1 ) 
-(An) 10(2/0) 10(2/0) 14(2/1 ) 14(2/1 ) 14(2/1 ) 
dIAn) 12(3/0) 12(3/0) 16(3/1 ) 16(3/1 ) 16(3/1 ) 

d(An,ix)* 14(3/0) 14(3/0) 18(3/1 ) 18(3/1 ) 18(3/1 ) 
xxx.w 12(3/0) 12(3/0) 16(3/1 ) 16(3/1 ) 16(3/1 ) 
xxx.l 16(4/0) 16(4/0) 20(4/1) 20(4/1) 20(4/1 ) 

d(PC) 12(3/0) 12(3/0) 16(3/1 ) 16(3/1 ) 16(3/1 ) 
d(PC,ix)* 14(3/0) 14(3/0) 18(3/1 ) 18(3/1 ) 18(3/1 ) 
#xxx 8(2/0) 8(2/0) 12(2/1 ) 12(2/1 ) 12(2/1 ) 

*The size of the index register (ix) does not affect execution time. 

VI·39 

6(1/0) 10(2/0) 
8(2/0) 12(3/0) 

10(2/0) 14(3/0) 
8(2/0) 12(3/0) 

12(3/0) 16(4/0) 
8(2/0) 12(3/0) 

10(2/0) 14(3/0) 
4(1/0) 8(2/0) 

dIAn) d(An,ix)* xxx.W xxx.L 

12(2/1 ) 14(2/1 ) 12(2/1 ) 16(3/1 ) 
12(2/1 ) 14(2/1 ) 12(2/1 ) 16(3/1 ) 
16(3/1 ) 18(3/1 ) 16(3/1 ) 20(4/1 ) 

16(3/1 ) 18(3/1 ) 16(3/1 ) 20(4/1 ) 
18(3/1 ) 20(3/1 ) 18(3/1 ) 22(4/1 ) 
20(4/1 ) 22(4/1 ) 20(4/1 ) 24(5/1 ) 

22(4/1 ) 24(4/1) 22(4/1 ) 26(5/1 ) 
20(4/1 ) 22(4/1 ) 20(4/1 ) 24(5/1 ) 
24(5/1 ) 26i5/1 ) 24(5/1 ) 28(6/1 ) 

20(4/1 ) 22(4/1 ) 20(4/1 ) 24(5/1 ) 
22(4/1 ) 24(4/1) 22(4/1 ) 26(5/1 ) 
16(3/1 ) 18(3/1 ) 16(3/1 ) 20(4/1 ) 

II 



MOVE LONG INSTRUCTION CLOCK PERIODS 
Table 26 

Source On An (An) 

Dn 4(110) 4(1/0) 12(1/2) 
An 4(1/0) 4(1/0) 12(1/2) 
(An) 12(3/0) 12(3/0) 20(312) 

(An)+ 12(3/0) 12(3/0) 20(312) 
-(An) 14(3/0) 14(3/0) 22(3/2) 
d(An) 16(4/0) 16(4/0) 24(4/2) 

d(An,ix)* 18(4/0) 18(4/0) 26(4/2) 
xxx.W 16(4/0) 16(4/0) 24(4/2) 

xxx.L 20(5/0) 20(5/0) 28(5/2) 

d(PC) 16(4/0) 16(4/0) 24(4/2) 
d(PC,ix)* 18(4/0) 18(4/0) 26(4/2) 
#xxx 12(3/0) 12(3/0) 20(312) 

Destination 
(An)+ -(An) 

12(1/2) 14(1/2) 
12(1/2) 14(1/2) 
20(3/2) 20(3/2) 

20(3/2) 20(3/2) 
22(3/2) 22(3/2) 
24(4/2) 24(4/2) 

26(4/2) 26(4/2) 
24(4/2) 24(4/2) 
28(5/2) 28(5/2) 

24(4/2) 24(4/2) 
26(4/2) 26(4/2) 
20(3/2) 20(3/2) 

*The size of the index register (ix) does not affect execution time. 

STANDARD INSTRUCTION CLOCK PERIODS 
Table 27 

Instruction Size 

Byte, Word 
ADD Long 

Byte, Word 
AND Long 

Byte, Word 
CMP Long 

DIVS -

DIVU -

Byte, Word 
EOR Long 

MULS -

MULU -

Byte, Word 
OR Long 

Byte, Word 
SUB Long 

+ add effective address calculation time 
* indicates maximum value 

op<ea>, An 

8(110) + 
6(1/0) +** 

-
-

6(1/0)+ 
6(1/0) + 

-

-

-
-

-

-

-
-

8(1/0) + 
6(1/0) +** 

d(An) d(An,ix)* 

16(2/2) 18(2/2) 
16(2/2) 18(2/2) 
24(4/2) 26(4/2) 

24(412) 26(4/2) 
26(4/2) 28(4/2) 
28(5/2) 30(5/2) 

30(5/2) 32(5/2) 
28(5/2) 30(5/2) 
32(6/2) 34(6/2) 

28(5/2) 30(5/2) 
30(5/2) 32(5/2) 
24(4/2) 26(4/2) 

op<ea>, On 

4(1/0) + 
6(1/0) +** 

4(1/0) + 
6(1/0) +** 

4(110) + 
6(1/0) + 

158(1/0) +* 

140(1/0) +* 

4(1/0)*** 
8(1/0)*** 

70(110) +* 

70(1/0) +* 

4(1/0) + 
6(1/0) +** 

4(110) + 
6(1/0) +** 

** total of 8 clock periods for instruction if the effective address is register direct 
*** only available effective address mode is data register direct 

xxx.W xxx.L 

18(2/2) 20(312) 
16(2/2) 20(312) 
24(4/2) 28(5/2) 

24(4/2) 28(5/2) 
26(4/2) 30(512) 
28(5/2) 32(6/2) 

30(5/2) 34(6/2) 
28(5/2) 32(6/2) 
32(6/2) 36(7/2) 

28(5/2) 32(5/2) 
30(5/2) 34(6/2) 
24(4/2) 28(5/2) 

op On, <M> 

8(1/1)+ 
12(1/2) + 

8(111 )+ 
12(1/2)+ 

-
-

-

-

8(111 )+ 
12(1/2) + 

-

-

8(1/1) + 
12(1/2) + 

8(1/1) + 
12(1/2) + 

DIVS, DIVU - The divide algorithm used by the MK68000 provides less than 10% difference between the best and worst case 
timings 
MULS, MULU - The multiply algorithm requires 38+ 2n clocks, where n is defined as: 
MULU: n = the number of ones in the <ea> 
MULS: n = concatenate of the <ea> with a zero as the LSB; n is the resultant number of 10 or 01 patterns in the 17 -bit 
source; i.e., worst case happens when the source is $5555 

VI-40 



IMMEDIATE INSTRUCTION CLOCK PERIODS 
Table 28 

Instruction Size 

Byte, Word 
ADDI Long 

Byte, Word 
ADDQ Long 

Byte, Word 
ANDI Long 

Byte, Word 
CMPI Long 

Byte, Word 
EORI Long 

MOVEQ Long 

Byte, Word 
ORI Long 

Byte, Word 
SUBI Long 

Byte, Word 
SUBQ Long 

+ add effective address calculation time 
*word only 

op #, On op#, M 

8(2/0) 12(2/1)+ 
16(3/0) 20(3/2) + 

4(110) 8(1/1)+ 
8(1/0) 12(1/2) + 

8(2/0) 12(2/1) + 
16(3/0) 20(3/1) + 

8(2/0) 8(2/0) + 
14(3/0) 12(3/0) + 

8(210) 12(2/1) + 
16(3/0) 20(3/2) + 

4(1/0) -

8(2/0) 12(2/1) + 
16(3/0) 20(3/2) + 

8(210) 12(2/1) + 
16(3/0) 20(3/2) + 

4(110) 8(1/1) + 
8(1/0) 12(1/2) ~ 

** uses CMPA instruction and only supports word or long word immediate values 

SINGLE OPERAND INSTRUCTION CLOCK PERIODS 
Table 29 

Instruction Size 

Byte, Word 
CLR Long 

NBCD Byte 

Byte, Word 
NEG Long 

Byte, Word 
NEGX Long 

Byte, Word 
NOT Long 

Byte, False 

See Byte, True 

TAS Byte 

Byte, Word 
TST Long 

+ add effective address calculation time 

Register 

4(1/0) 
6(1/0) 

6(110) 

4(1/0) 
6(1/0) 

4(1/0) 
6(1/0) 

4(110) 
6(1/0) 

4(110) 
6(1/0) 

4(1/0) 

4(110) 
4(1/0) 

VI-41 

op #, An 

-
-

8(1/0)* 
8(110) 

-
-

8(2/0)** 

14(3/0) 

-
-

-

-
- II 
-
-

8(1/0)* 
8(110) 

Memory 

8(1/1)+ 
12(1/2) + 

8(1/1) + 

8(1/1) + 
12(1/2) + 

8(1/1) + 
12(1/2) + 

8(1/1) + 
12(1/2) + 

8(1/1) + 
8(1/1) + 

10(1/1) + 

4(1/0) 
4(1/0) + 



SHIFT IROTATE INSTRUCTION CLOCK PERIODS 
Table 30 

Instruction 

ASR, ASL 

LSR. LSL 

ROR, ROL 

ROXR,ROXL 

+ add effective address calculation time 
n is the shift or rotate count 

Size 

Byte, Word 
Long 

Byte, Word 
Long 

Byte, Word 
Long 

Byte, Word 
Long 

BIT MANIPULATION INSTRUCTION CLOCK PERIODS 
Table 31 

Instruction Size 

Byte 
BCHG Long 

Byte 
BCLR Long 

Byte 
BSET Long 

Byte 
BTST Long 

+ add effective address calculation time 
* indicates maximum value 

Register 

-
8(110)* 

-
10(1/0)* 

-

8(1/0)* 

-

6(1/0) 

CONDITIONAL INSTRUCTION CLOCK PERIODS 
Table 32 

Instruction Displacement 

Byte 

Bee Word 

Byte 
BRA Word 

Byte 
BSR Word 

CC true 
DBee CC false 

CHK -

TRAP -

TRAPV -

+ add effective address calculation time 
* indicates maximum value 

Dynamic 

VI-42 

Register Memory 

6 + 2n(1/0) 8(1/1) + 
8 + 2n(1/0) -

6 + 2n(1/0) 8(1/1) + 
8 + 2n(1/0) -

6 + 2n(1I0) 8(1/1) + 
8 + 2n(1/0) -

6 + 2n(1/0) 8(111) + 
8 + 2n(1/0) -

Static 
Memory Register Memory 

8(111 )+ - 12(2/1)+ 
- 12(2/0)* -

8(111 )+ - 12(2/1 )+ 
- 14(2/0)* -

8(111 )+ - 12(2/1 )+ 
- 12(2/0)* -

4(110)+ - 8(2/0)+ 
- 10(2/0) -

Trap or Branch Trap or Branch 
Taken Not Taken 

10(2/0) 8(110) 
10(2/0) 12(2/0) 

10(2/0) -

10(2/0) -

18(2/2) -

18(2/2) -

- 12(2/0) 
10(2/0) 14(3/0) 

40(513)+ * 8(1/0)+ 

34(4/3) -

34(5/3) 4(110) 



JMP, JSR, LEA, PEA, MOVEM INSTRUCTION CLOCK PERIODS 
Table 33 

Instr Size (An) (An)+ -(An) dIAn) d(An,ix)+ xxx.W xxx.L d(PC) d(PC,ix)* 

JMP - 8(2/0) - - 10(2/0) 14(3/0) 10(2/0) 12(3/0) 10(2/0) 14(3/0) 

JSR - 16(2/2) - - 18(2/2) 22(2/2) 18(2/2) 20(3/2) 18(2/2) 22(2/2) 

LEA - 4(110) - - 8(2/0) 12(2/0) 8(210) 12(3/0) 8(210) 12(2/0) 

PEA - 12(1/2) - - 16(2/2) 20(2/2) 16(2/2) 20(3/2) 16(2/2) 20(2/2) 

12 + 4n 12 + 4n - 16 + 4n 18 + 4n 16 + 4n 20 + 4n 16 + 4n 18 + 4n 
MOVEM Word (3 + n/O) (3 + n/O) - (4 + n/O) (4 + n/O) (4 + n/O) (5 + n/O) (4 + n/O) (4 + n/O) 

12 + 8n 12 + 8n - 16 + 8n 18 + 8n 16 + 8n 20 + 8n 16 + 8n 18 + 8n 
M-'R Long (3 + 2n/0) (3 + 2n/0) - (4 + 2n/0) (4 + 2n/0) (4 + 2n/0) (5 + 2n/0) (4 + 2n/0) (4 + 2n/0) 

8 + 5n - 8 + 5n 12 + 5n 14 + 5n 12 + 5n 16 + 5n - -

MOVEM Word (2/n) - (2/n) (3/n) (3/n) (3/n) (4/n) - -
8 + 10n - 8 + 10n 12 + 10n 14 + 10n 12 + 10n 16 + 10n - -

R~M Long (2/2n) - (2/2n) (3/2n) (3/2n) (3/2n) (4/2n) - -

n is the number of registers to move 
* is the size of the index register (ix) does not affect the instruction's execution time 

EFFECTIVE ADDRESS OPERAND CALCULATION 
TIMING 

Table 24 lists the number of clock periods required to 
compute an instruction's effective address. It includes 
fetching of any extension words, the address computation, 
and fetching of the memory operand. The number of bus 
read and write cycles is shown in parenthesis as (r Iw). Note 
there are no write cycles involved in processing the effective 
address. 

MOVE INSTRUCTION CLOCK PERIODS 

Tables 25 and 26 indicate the number of clock periods for 
the move instruction. This data includes instruction fetch, 
operand reads, and operand writes. The number of bus read 
and write cycles is shown in parenthesis as: (r/w). 

STANDARD INSTRUCTION CLOCK PERIODS 

The number of clock periods shown in Table 27 indicates 
the time required to perform the operations, store the 
results, and read the next instruction. The number of bus 
read and write cycles is shown in parenthesis as: (r/w). The 
number of clock periods plus the number of read and write 
cycles must be added to those of the effective address 
calculation where indicated. 

In Table 27, the headings have the following meanings. An 
= address register operand, Dn = data register operand, ea 
= an operand specified by an effective address, and M = 
memory effective address operand. 

IMMEDIATE INSTRUCTION CLOCK PERIODS 

The number of clock periods shown in Table 28 includesthe 

time to fetch immediate operands, perform the operations, 
store the results, and read the next operation. The number 
of bus read and write cycles is shown in parenthesis as: 
(r/w). The number of clock periods plus the number of read 
and write cycles must be added to those of the effective 
address calculation where indicated. 

In Table 28, the headings have the following meanings: # = 
immediate operand, Dn = data register operand, M 
memory operand, and An = address register operand. 

SINGLE OPERAND INSTRUCTION CLOCK PERIODS 

Table 29 indicates the number of clock periods for the single 
operand instructions. The number of bus read and write 
cycles is shown in parenthesis as: (r/w). The number of 
clock periods plus the number of read and write cycles must 

MULTI-PRECISION INSTRUCTION CLOCK PERIODS 
Table 34 

Instruction Size op Dn, Dn opM, M 

Byte, Word 4(1/0) 18(3/1 ) 
ADDX Long 8(110) 30(5/2) 

Byte, Word - 12(3/0) 
CMPM Long - 20(5/0) 

Byte, Word 4(110) 18(3/1) 
SUBX Long 8(1/0) 30(5/2) 

ABCD Byte 6(110) 18(3/1 ) 

SBCD Byte 6(110) 18(3/1) 

VI-43 

II 



be added to those of the effective address ca Icu lation where 
indicated. 

SHIFT I ROTATE INSTRUCTION CLOCK PERIODS 

Table 30 indicates the number of clock periods for the shift 
and rotate instructions. The number of bus read and write 
cycles is shown in parenthesis as: (r/w). The number of 
clock periods plus the number of read and write cycles must 

MISCELLANEOUS INSTRUCTION CLOCK PERIODS 
Table 35 

Instruction Size Register 

ANDI to CCR Byte 20(3/0) 

ANDI to SR Word 20(3/0) 

EORI to CCR Byte 20(3/0) 

EORI to SR Word 20(3/0) 

ORI to CCR Byte 20(3/0) 

ORI to SR Word 20(3/0) 

MOVE from SR - 6(110) 

MOVE to CCR - 12(2/0) 

MOVE to SR - 12(2/0) 

Word -

MOVEP Long -

EXG - 6(110) 

Word 4(1/0) 

EXT Long 4(1/0) 

LINK - 16(2/2) 

MOVE from USP - 4(110) 

MOVE to USP - 4(1/0) 

NOP - 4(1/0) 

RESET - 132(1/0) 

RTE - 20(5/0) 

RTR - 20(5/0) 

RTS - 16(4/0) 

STOP - 4(010) 

SWAP - 4(1/0) 

UNLK - 12(3/0) 

+ add effective address calculation time 

be added to those of the effective address calculation where 
indicated. 

BIT MANIPULATION INSTRUCTION CLOCK PERIODS 

Table 31 indicates the number of clock periods required for 
the bit manipulation instructions. The number of bus read 
and write cycles is shown in parenthesis as: (r/w). The 
number of clock periods plus the number of read and write 

Memory Register - Memory Memory - Register 

- - -

- - -

- - -

- - -

- - -

- -

8(111 )+ - -

12(2/0)+ - -

12(2/0)+ - -

- 16(2/2) 16(4/0) 

- 24(2/4) 24(6/0) 

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

VI-44 



AC ELECTRICAL WAVEFORMS 
Figure 36 

These waveforms should only be referenced in regard to the edge-to-edge measurement of the timing specifications. They are not intended as a 
functional description of the input and output signals. Refer to other functional descriptions and their related diagrams for device operation. 

\~----------1H~----------

E 
~--~--------------~5'~------------------~~--~ 

CLK 

A23-A1 
------~--~~~~ 

FC2-FCO ------:----:-7"--!'c~-~<----:-;____t____;_;_~;::;:__-_;_----' 

LDS. UDS READ CYCLE 

LDS. UDSWRITECYCLE 

R/WREAD CYCLE 
--------------~--~ 

R/WWRITE CYCLE 

~0r- 55~~ __ ~11......::::::::r 
DATA OUT }--____________________________ 3®~47~~ ________________________ ~~11~~ __ 

ASYNCHRONOUS INPUTS 
(SEE NOTE 1) -------------

HALT. RESET (INPUT)-- - - - - - - - -

---------------------, 

DATA IN- - -- - - - - - - - - - -- -- -- - - -- -- --

NOTE1: Setup time for the asynchronous inputs BERR. BGACK. BR. 
DTACK. IPLO-IPL2. and VPA guarantees their recognition at the next 
falling edge of the clock. 

NOTE 2: Waveform measurements for all inputs and outputs are 
specified at: logic high = 2.0 volts. logic low = 0.8 volts. 

VI-45 

• 



cycles must be added to those of the effective address 
calculation where indicated. 

CONDITIONAL INSTRUCTION CLOCK PERIODS 

Table 32 indicates the number of clock periods required for 
the conditional instructions. The number of bus read and 
write cycles is indicated in parenthesis as: (r/w). The 
number of clock periods plus the number of read and write 
cycles must be added to those of the effective address 
calculation where indicated. 

JMP, JSR, LEA, PEA, MOVEM INSTRUCTION CLOCK 
PERIODS 

Table 33 indicates the number of clock periods required for 
the jump, jump to subroutine, load effective address, push 
effective address, and move multiple registers instructions. 
The number of bus read and write cycles is shown in 
parenthesis as: (r/w). 

MULTI-PRECISION INSTRUCTION CLOCK PERIODS 

Table 34 indicates the number of clock periods for the 
multi-precision instructions. The number of clock periods 
includes the time to fetch both operands, perform the 
operations, store the results, and read the next instructions. 
The number of read and write cycles is shown in 
parenthesis as: (r/w). 

In Table 34, the headings have the following meanings: Dn 
= data register operand and M = memory operand. 

MISCELLANEOUS INSTRUCTION CLOCK 'PERIODS 

Table 35 indicates the number of clock periods for the 
following miscellaneous instructions. The number of bus 
read and write cycles is shown in parenthesis as: (r/w). The 
number of clock periods plus the number of read and write 
cycles must be added to those of the effective address 
calculation where indicated. 

EXCEPTION PROCESSING CLOCK PERIODS 

Table 36 indicates the number of clock periods for exception 
processing. The number of clock periods includes the time for 
all stacking, the vector fetch, and the fetch of the first 
instruction of the handler routine. The number of bus read 
and write cycles is shown in parenthesis as: (r/w). 

EXCEPTION PROCESSING CLOCK PERIODS 
Table 36 

Exception Periods 

Address Error 50(4/7) 

Bus Error 50(4/7) 

Interrupt 44(5/3)* 

Illegal Instruction 34(4/3) 

Privileged Instruction 34(4/3) 

Trace 34(4/3) 

*The interrupt acknowledge bus cycle is assumed to take 
four external clock periods 

VI-46 



AC ELECTRICAL SPECIFICATIONS 
(Vcc = 5.0 Vdc ± 5%; Vss = 0 Vdc; TA = O°C to 70°C, Figure 34) 

4MHz SMHz 8MHz 10MHz 
No. Characteristic Symbol MKS8000-4 MKS8000-S MKS8000-8 MKS8000-10 Unit 

Min Max Min Max Min Max Min Max 

1 Clock Period tcyc 250 500 167 500 125 500 100 500 ns 

2 Clock Width Low tCl 115 250 75 250 55 250 45 250 ns 

3 Clock Width High tCH 115 250 75 250 55 250 45 250 ns 

4 Clock Fall Time tct - 10 - 10 - 10 - 10 ns 

5 Clock Rise Time tCr - 10 - 10 - 10 - 10 ns 

6 Clock Low to Address tCLAV - 90 - 80 - 70 - 55 ns 

6A Clock High to FC Valid tCHFCV - 90 - 80 - 70 - 60 ns 

7 Clock High to Address/Data tCHAZx - 120 - 100 - 80 - 70 ns 
High Impedance (maximum) 

8 Clock High to Address/FC tCHAZn 0 - 0 - 0 - 0 - ns III 
Invalid (minimum) 

9' Clock High to AS, DS Low tcHSLx - 80 - 70 - 60 - 55 ns 
(maximum) 

10 Clock High to AS, DS Low tCHSln 0 - 0 - 0 - 0 - ns 
(minimum) 

112 Address to AS, DS tAVSl 55 - 35 - 30 - 20 - ns 
(read) Low/ AS Write 

11A2 FC valid to AS, DS tFCVSl 80 - 70 - 60 - 50 - ns 
(read) Low/ AS Write 

12' Clock Low to AS, DS High tClSH - 90 - 80 - 70 - 55 ns 

132 AS, DS High to Address/FC tSHAZ 60 - 40 - 30 - 20 - ns 
Invalid 

142 AS, DS Width Low (read)! tSl 535 - 337 - 240 - 195 - ns 
AS Write 

14A2 DS Width Low (Write) 285 
( 

170 115 95 - - - - - ns 

152 AS, DS Width High tSH 285 - 180 - 150 - 105 - ns 

16 Clock High to AS, DS High tCHSZ - 120 - 100 - 80 - 70 ns 
Impedance 

172 AS, DS High to R/W High tSHRH 60 - 50 - 40 - 20 - ns 

18' Clock High to R/W High (maximum) tCHRHx - 90 - 80 - 70 - 60 ns 

19 Clock High to R/W High (minimum) tCHRHn 0 - 0 - 0 - 0 - ns 

20' Clock High to R/W Low tCHRl - 90 - 80 - 70 - 60 ns 

20A AS Low to R/W Valid tASRV - 20 - 20 - 20 - 20 ns 

212 Address/Valid to RIW Low tAVRl 45 - 25 - 20 - 0 - ns 

VI-47 



AC ELECTRICAL SPECIFICATIONS (Continued) 
(V cc = 5.0 Vdc ± 5%; V ss = 0 Vdc; T A = O°C to 70°C, Figure 34) 

4MHz SMHz 8MHz 10 MHz 
No. Characteristic Symbol MKS8000-4 MKS8000-S MKS8000-8 MKS8000-10 Unit 

Min Max Min Max Min Max Min Max 

21A2 FC Valid to RIW Low tFCVRL 80 - 70 - 60 - 50 - ns 

222 R/W Low to OS Low (write) tRLSL 200 - 140 - 80 - 50 - ns 

23 Clock Low to Data Out Valid tCLOO - 90 - 80 - 70 - 55 ns 

24 Clock High to R/W, VMA High tCHRZ - 120 - 100 - 80 - 70 ns 
Impedance 

252 DS High to Data Out Invalid tSHoO 60 - 40 - 30 - 20 - ns 

262 Data Out Valid to DS Low (write) tOOSL 55 - 35 - 30 - 20 - ns 

275 Data In to Clock Low (set up time) tOICL 30 - 25 - 15 - 10 - ns 

282 AS, DS High to DTACK High tSHOAH 0 490 0 325 0 245 0 190 ns 

29 DS High to Data Invalid (hold time) tSHol 0 - 0 - 0 - 0 - ns 

30 AS, DS High to BERR High tSHBEH 0 - 0 - 0 - 0 - ns 

312,5 DTACK Low to Data In (setup time) tOALOI - 180 - 120 - 90 - 65 ns 

32 HALT and RESET Input Transition tRHrf 0 200 0 200 0 200 0 200 ns 
Time 

33 Clock High to BG Low tCHGL - 90 - 80 - 70 - 60 ns 

34 Clock High to BG High tCHGH - 90 - 80 - 70 - 60 ns 

35 BR Low to BG Low tBRLGL 1.5 3.5 1.5 3.5 1.5 3.5 1.5 3.5 clk. per. 

36 BR High to BG High tBRHGH 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0 clk. per. 

37 BGACK Low to BG High tGALGH 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0 elk. per. 

37A BGACK Low to BR High tBGKBR 30 - 25 - 20 - 20 - ns 
(to Prevent Rearbitration) 

38 BG Low to Bus High Impedance tGLZ - 120 - 100 - 80 - 70 ns 
(with AS high) 

39 BG Width High tGH 1.5 - 1.5 - 1.5 - 1.5 - clk. per. 

40 Clock Low to VMA Low tCLVML - 90 - 80 - 70 - 70 ns 

41 Clock Low to E Transition tCLE - 100 - 85 - 70 - 55 ns 

42 E Output Rise and Fall Time tErf - 25 - 25 - 25 - 25 ns 

43 VMA Low to E High tVMLEH 325 - 240 - 200 - 150 - ns 

44 AS, DS High to VPA High tSHVPH 0 240 0 160 0 120 0 90 ns 

45 E Low to Address/VMAlFC tELAI 55 - 35 - 30 - 10 - ns 
Invalid 

46 BGACKWidth tBGL 1.5 - 1.5 - 1.5 - 1.5 - elk. per. 

475 Asynchronous Input Setup Time tASI 30 - 25 - 20 - 20 - ns 

VI-48 



AC ELECTRICAL SPECIFICATIONS (Continued) 
(Vcc = 5.0 Vdc ± 5%; Vss = 0 Vdc; T A = O°C to 70°C, Figure 34) 

4MHz S MHz 8MHz 10 MHz 
No. Characteristic Symbol MKS8000-4 MKS8000-S MKS8000-8 MKS8000-1C Unit 

Min Max Min Max Min Max Min Max 

483 BERR Low to DT ACK Low tBELDAL 50 - 50 - 50 - 50 - ns 

49 E Low to AS, DS Invalid tELSI -80 - -80 - -80 - -80 - ns 

50 E Width High tEH 900 - 600 - 450 - 350 - ns 

51 E Width Low tEL 1400 - 900 - 700 - 550 - ns 

52 E Extended Rise Time tCIEHX 80 - 80 - 80 - 80 - ns 

53 Data Hold from Clock High tCHDO 0 - 0 - 0 - 0 - ns 

54 Data Hold from E Low (Write) tELDOZ 60 - 40 - 30 - 20 - ns 

55 R/W to Data bus Impedance change tRLDO 55 - 35 - 30 - 20 - ns 

56 Halt/RESET Pulse Width (Note 4) tHRPW 10 - 10 - 10 - 10 - !elk. per. 

NOTES: 
4. After VCC has been applied for 100 ms. 1. For a loading capacitance of less than or equal to 50 picofarads, subtract 5 

nanoseconds from the values given in these columns. 
2. Actual value depends on actual clock period. 
3. If #47 is satisfied for both DTACK and BERR, #48 may be 0 ns. 

5. If the asynchronous setup time(#47) requirements are satisfied, the DTACK 
low-to-data setup time (#31) requirement can be ignored. The data must 
only satisfy the data-in to clock-low setup time (#27) for the following cycle. 

AC ELECTRICAL WAVEFORMS - BUS ARBITRATION 
Figure 37 

!~~O:;~ ______________ ~-----

~ 1 ~ :;;:A}....--.-; -F9 
I 

elK 

These waveforms should only be referenced in regard to the edge-to-edge measurement of the timing specifications. They are not intended as a 
functional description of the input and output signals. Refer to other functional descriptions and their related diagrams for device operation 

RESET TEST LOAD 
Figure 38 

+5Vdc 

910n 

I130PF 

HALT TEST LOAD 
Figure 39 

+5Vdc 

2.9n 

I
70PF 

VI-49 

TEST LOADS 
Figure 40 

TEST 
POINT 

~ln:I~~~/;1 Parasiticsl 
RL = 6.0 kfl for 
AS. A1-A23, BG, 00-015. E 
FCO-FC2. LOS, R/iN. UOS. VMA 

*R = 1.22 kll for A 1·A23. BG. 
E. FCO-FC2 

+5 Vdc 

MMD7000 
OR EQUIVALENT 

II 



DC ELECTRICAL CHARACTERISTICS 
(Vee = 5.0 Vdc ± 5%; V ss = 0 Vdc; T A = O°C to 70°C, Figures 35, 36, 37) 

Characteristic 

Input High Voltage 

Input Low Voltage 

Input Leakage Current BERR, BGACK, BR, VPA, 
@5.25V DT ACK, CLOCK, IPLO-IPL2, 

HALT, RESET 

Three-State (Off State) Input Current AS, A 1-A23, DO-D15, 
@ 2.4 V/O.4 V FCO-FC2, LDS, 

R/W, UDS, VMA 

Output High Voltage (lOH = -400 MAdc) AS, A 1-A23, BG, E*** 
DO-D15, E, FCO-FC2, 
LDS,R/W,UDS,VMA 

E* 

Output Low Voltage 
(lOL = 1.6mA) HALT 
(lOL = 3.2mA) A 1-A23, BG, FCO-FC2 
(lOL = 5.0mA) RESET 
(lOL = 5.3mA) E, AS, DO-D15, LDS, RIW, 

UDS, VMA 

Power Dissipation (Clock Frequency = 
8 MHz)**** 

Capacitance (Package Type Dependent) 
(Vin = 0 Vdc; T A = 25°C; 
Frequency = 1 MHz**) 

*with external pullup resistor of 1 .1 K n 
**capacitance is periodically sampled rather than 100% tested 
***without external pullup resistor 

Symbol 

V1H 

V1L 

lin 

ITS1 

VOH 

VOL 

PD 

Cin 

Min 

2.0 

Vss - 0.3 

-
-

-

2.4 

Vee-O·75 

-

-
-
-

-

-

****During normal operation instantaneous Vee current requirements may Ibe as high as LSA 

MAXIMUM RATINGS 

Rating Symbol Value Unit 

Supply Voltage Vee -0.3 to + 7.0 Vdc 

Input Voltage V in -0.3 to + 7.0 Vdc 

Operating Temperature TA Oto70 °C 

Storage Temperature Tstg -55 to 150 °C 

VI-50 

Max Unit 

Vee Vdc 

0.8 Vdc 

2.5 /.IAdc 
20 

20 MAdc 

- Vdc 

0.5 
0.5 
0.5 Vdc 
0.5 

1.5 W 

20.0 pF 



MK68000 ORDERING INFORMATION 

PART PACKAGE MAX. CLOCK TEMPERATURE 
NO. TYPE FREQUENCY RANGE 

MK68000P-4 Ceramic 4.0 MHz 

MK68000P-6 Ceramic 6.0 MHz 
0° to 70°C 

MK68000P-8 Ceramic 8.0 MHz 

MK68000P-10 Ceramic 10.0 MHz 

VI-51 




